Sergey Sukhanov

Sergey Sukhanov


Member of the Signal Processing Group at the Institute of Telecommunications, TU Darmstadt

Merkstr. 25
64283 Darmstadt

Office: S3|06 257

go to list

Sergey Sukhanov received his B.Sc. and M.Sc. degrees in Information and Communication Engineering in 2010 and 2014 from Saint-Petersburg State Electrotechnical University, Russia and TU Darmstadt, Germany respectively. In his master thesis “Data Fusion for Person Verification and Imbalanced Classes” he extended the Neyman-Pearson Support Vector Machines framework by incorporating preknowledge about local temporary behavior of objects and addressed class imbalance problem by proposing a variation of bagging-based technique.

In April 2016, Sergey joined Signal Processing Group and commenced work on his Ph.D.


Sergey's research interests cover various areas of machine learning and data analysis. He is especially interested in ensemble methods in classification and clustering scenarios. Currently, he is working on the topic of consensus clustering for large-scale datasets.


Exportieren als [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Item type | No grouping
Jump to: 2019 | 2018 | 2017 | 2016 | 2015
Number of items: 10.


Sukhanov, S. ; Debes, C. ; Zoubir, A. M. (2019):
Dynamic Selection of Classifiers for Fusing Imbalanced Heterogeneous Data.
In: 44th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK, 12-17 May 2019, [Online-Edition:],
[Conference item]


Sukhanov, S. ; Debes, C. ; Zoubir, A. M. (2018):
Interpretable Clustering Ensembles Using Binary Matrix Factorization.
In: Proc. 43th IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), [Conference item]

Yokoya, N. ; Ghamisi, P. ; Xia, J. ; Sukhanov, S. ; Heremans, R. ; Tankoyeu, I. ; Bechtel, B. ; Saux, B. L. ; Moser, G. ; Tuia, D. (2018):
Open Data for Global Multimodal Land Use Classification: Outcome of the 2017 IEEE GRSS Data Fusion Contest.
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, [Article]

Sukhanov, S. ; Merentitis, A. ; Debes, C. ; Hahn, J. ; Zoubir, A. M. (2018):
Combining SVMs For Classification on Class Imbalanced Data.
In: IEEE Statistical Signal Processing Workshop (SSP), [Conference item]

Sukhanov, S. ; Budylskii, D. ; Tankoyeu, I. ; Heremans, R. ; Debes, C. (2018):
Fusion of LiDAR, Hyperspectral and RGB Data for Urban Land use and Land Cover Classification.
In: 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), [Conference item]


Sukhanov, S. ; Tankoyeu, I. ; Louradour, J. ; Heremans, R. ; Trofimova, D. ; Debes, C. (2017):
Multilevel ensembling for local climate zones classification.
In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), S. 1201-1204, [Conference item]

Sukhanov, S. ; Debes, C. ; Gupta, V. ; Zoubir, A. M. (2017):
Consensus clustering on data fragments.
In: Proc. 42th IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), [Conference item]


Debes, C. ; Merentitis, A. ; Sukhanov, S. ; Niessen, M. ; Frangiadakis, N. ; Bauer, A. (2016):
Monitoring Activities of Daily Living in Smart Homes: Understanding Human Behavior.
33, In: IEEE Signal Process. Mag., (2), S. 81-94, [Article]


Hamer, H. ; Merentitis, A. ; Frangiadakis, N. ; Sukhanov, S. (2015):
Automatic Visual Analysis of Real-World Events Covered By Social Media Using Convolutional Neural Networks.
In: IEEE Int. Conf. Data Mining Workshop (ICDMW), S. 1-6, [Conference item]

Sukhanov, S. ; Merentitis, A. ; Debes, C. ; Hahn, J. ; Zoubir, A. M. (2015):
Bootstrap-Based SVM Aggregation For Class Imbalance Problems.
In: European Signal Process. Conf. (EUSIPCO), S. 165-169, [Conference item]

This list was generated on Wed Jan 22 05:41:49 2020 CET.