Aktuelle Mitarbeitende
Michael Muma

Dr.-Ing. Michael Muma

Mitarbeiter des Fachgebiets Signalverarbeitung am Institut für Nachrichtentechnik, TU Darmstadt.

Kontakt

work +49 6151 16-21346
fax +49 6151 16-21342

Work S3|06 264
Merckstraße 25
64283 Darmstadt

Sprechstunde: Termine nach Vereinbarung.

Michael Muma leitet die Robust Data Science Group, ist Pricipal Investigator des ERC Starting Grants „ScReeningData“ und Forscher im LOEWE center emergenCITY. Er ist Lehrbeauftragter und hat als Nachwuchsgruppenleiter Athene Young Investigator das Promotionsrecht.

Die Forschung von Michael Muma ist im Bereich Robust Data Science mit Anwendungen in der Signalverarbeitung und des maschinellen Lernens für die Biomedizin und die Ingenieurswissenschaften.

Michael Muma erhält den 2021 Early Career Award der European Association For Signal Processing (EURASIP) für seine Beiträge zur robusten Signalverarbeitung und zum statistischen Lernen. Der Preis geht an „außergewöhnliche Forscherinnen und Forscher unter 40 Jahren, welche in ihrer Karriere bereits große wissenschaftliche Leistungen erbracht haben und deren Arbeit das Potential hat, die Forschung auf ihrem Gebiet nachhaltig zu verändern“.

Seit 2022, ist er der Vorsitzende des Technical Area Committee on Theoretical and Methodological Trends in Signal Processing von EURASIP.

Gemeinsam mit Forschern aus Finnland und Frankreich organisiert er den Statistical Learning for Signal and Image Processing (SLSIP) Workshop, der im Jahr 2022 in Cadaques, Spanien stattfindet.

Michael Muma ist Koautor des Papers „An Unsupervised Approach for Graph-based Robust Clustering of Human Gait Signatures“ von Aylin Tastan, das den IEEE Radar Conference Student Best Paper Award 2020 erhielt.

Michael Fauß, Abdelhak Zoubir und Michael Muma haben bei der IEEE ICASSP 2020 ein Tutorial mit dem Titel Robust Data Science: Modern Tools for Detection, Clustering and Cluster Enumeration gehalten.

Michael ist Associate Editor der IEEE Transactions on Signal Processing und des IEEE Open Journal of Signal Processing.

Michael Muma ist Guest Editor der 2019 Elsevier Signal Processing Special Issue on Statistical Signal Processing Solutions and Advances for Data Science: Complex, Dynamic and Large-scale Settings.

Im Dezember 2018 wurde Dr.-Ing. Muma zum Lehrbeauftragen für die Vorlesung Robust Signal Processing With Biomedical Applications und das Projektseminar Robust and Biomedical Signal Processing ernannt.

Im Oktober 2018, erschien das Buch Robust Statistics for Signal Processingby Abdelhak M. Zoubir, Visa Koivunen, Esa Ollila and Michael Muma was published bei Cambridge University Press.

Abdelhak M. Zoubir, Visa Koivunen, Yacine Chakhchoukh and Michael Muma erhielten den 2017 IEEE Signal Processing Magazine Best Paper Award für ihren Artikel Robust Estimation in Signal Processing: A tutorial-style treatment of fundamental concepts.

Im Oktober 2017 wurde Dr.-Ing. Muma zum Athene Young Investigator der Technischen Universität Darmstadt ernannt. Das TU-Programm Athene Young Investigator fördert die frühe wissenschaftliche Selbständigkeit von herausragenden Nachwuchswissenschaftlerinnnen und Nachwuchswissenschaftlern mit dem Karriereziel Professur. Das von Dr.-Ing Muma vorgeschlagene Forschungsprojekt trägt den Titel „Robuste Statistik für Fortgeschrittene Signalverarbeitung“. Mit der Ernennung zum Athene Young Investigator erhält Dr.-Ing. Muma auch das Promotionsrecht.

Im September 2016 organisierte er die Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing Rüdesheim (Rhine), Germany. Material und weitere Information ist hier verfügbar: www.rosip2016.org

Von 2013-2016 leitete er das Arbeitspaket „Robust Distributed Multi-Source Detection and Labelling“ des EU Future and Emerging Technologies (FET) Projekts HANDiCAMS (Heteregenous Ad-Hoc Networks for Distributed, Cooperative, and Adaptive Multimedia Signal Processing), das sich mit robusten dezentralen Verfahren der Signalverarbeitung für drahtlose Sensornetze beschäftigt. Infos zu diesem Projekt sind hier zu finden: www.handicams-fet.eu

Das von Michael betreute Studenten-Team der Technischen Universität Darmstadt ist der diesjährige Gewinner des internationalen IEEE Signal Processing Cups 2015. Der IEEE Signal Processing Cup ist ein renommierter Wettbewerb, bei dem mehr als 50 Teams aus der ganzen Welt antreten um eine anspruchsvolle und interessante Aufgabe aus dem Bereich der Signalverarbeitung lösen. Das Wettbewerbsthema war die „Herzfrequenzschätzung bei körperlicher Belastung mit Photoplethysmographischen (PPG) Messungen am Handgelenk“.

Michael arbeitete von 2009-2014 als wissenschaftlicher Mitarbeiter am Fachgebiet Signalverarbeitung. Seine Doktorarbeit beschäftigte sich Schwerpunktmäßig mit robusten statistischen Methoden für die Signalverarbeitung mit Anwendungen in der Biomedizin und Sensorgruppensignalverarbeitung. 2014 promovierte er mit Auszeichnung (summa cum laude) zum Thema „Robust Estimation and Model Order Selection for Signal Processing“ (Download PhD thesis here).

In seiner Diplomarbeit entwickelte er in der School of Optometry in Brisbane, Australien, eine Zeit-Frequenzabhängige Kohärenzanalyse die den Einfluss von Puls- und Atmungssignalen auf die dynamischen Aberrationen des menschlichen Auges aufzeigte.

Seine Studienarbeit beschäftigte sich mit der Parameterschätzung zur Augenliederkennung in videokeratoskopischen Bildern.

Lehrbeauftragter

Assistent

Aktuelle Dissertationen

  • Jasin Machkour Robust and Adaptive Statistical Learning for High-Dimensional Data
  • Aylin Tastan Robust Statistical Signal Processing for Human Gait Recognition Using Radar (Co-Supervision)
  • Christian Schroth Robust Sequential Analysis in Networks (Co-Supervision)
  • Mahmoud El-Hindi Fast and Robust Speaker Learning in Hearing Aids (Co-Supervision)

Abgeschlossene Dissertationen

  • Sergey Sukhanov Ensemble Methods in Classification and Clustering (Co-Supervision), 2021
  • Freweyni Teklehaymanot Robust and Distributed Cluster Enumeration and Labelling, 2019.
  • Tim Schäck Photoplethysmography-Based Biomedical Signal Processing (Co-Supervision), 2018.
  • Marlene Dejá Response Synchrony and Response Patterning of Psychophysiological Parameters in Emotion (Co-Supervision), 2018.
  • Lala Khadidja Hamaidi Robust Distributed Multi-Source Detection and Labelling in Wireless Acoustic Sensor Networks (Co-Supervision), 2018.

Aktuelle Master und Bachelorprojekte

  • Sebastian Wirth Radarbasierte Blutdruckschätzung
  • Christian Eckrich Radarbasierte Vitalparameterschätzung
  • Bonnie Brader Visibility-Graph basierte EKG Analyse
  • Jonas Emrich Robuste Visibility Graphen Methoden für Biomedizinische Signalverarbeitung
  • Simon Tien Entwicklung von hochdimensionalen Lernverfahren für Genomweite Assoziationsstudien
  • Yuhze Ma Signalverarbeitungsalgorithmen für radarbasierte Vitalparameterschätzung
  • Klara Saari Untergruppenselektion in EEG Sensornetzwerken für P300 Detektion

Abgeschlossene Master und Bachelorprojekte

  • Taulant Koka A finite rate of innovation approach for the
    estimation of permuted streams of decaying exponentials (external thesis at EPFL), (04/2022)
  • Jize Liu Compressive Sensing für die Radarbildgebung (02/2022)
  • Lisa Dawel Entwicklung und Analyse von dünnbesetzten hochdimensionalen Ensemble-Lernverfahren (12/2021)
  • Samet Rasih Köseli Non-linear Crosstalk Modeling, Identification and Suppression in Hearing Devices between the Receiver and the Voice Pick-Up Unit (external thesis at Sivantos (WSAudiology Group)) 07/2021
  • Ones Chamli Algorithmen für die radarbasierte Vitalparameter Schätzung 04/2021
  • Simon Schwanz Robuste photoplethysmographiebasierte Elektrokardiogramm- und Blutdrucksynthese 09/2020
  • Felicia Ruppel Robustes statistisches Lernen für hochdimensionale Daten mit Ausreißern 07/2020
  • Simon Tien Robuste Regularisierte Schätzung der Inversen der Kovarianzmatrix 04/2020
  • Christian Schroth Robuste Bayes'sche Clusteranalyse 03/2020
  • Sarosh Manzoor Erkennung von Straßenschäden für das autonome Fahren 03/2020
  • Mahmoud El-Hindi Online Sprecher Erkennung mit limitierten Trainingsdaten 10/2019
  • Jin He Maschinelle Lernverfahren zur PPG basierten Schätzung kardiovaskulärer Parameter 08/2019
  • Peter Paulat Früherkennung gesundheitsschädlicher Ereignisse bei Menschen mit Typ I Diabetes 08/2019
  • Jasin Machkour Robustes und adaptives statistisches Lernen für hochdimensionale Daten 05/2019
  • Martin Gölz Räumliche Inferenz in Large-Scale Sensor Netzwerken unter Verwendung Multipler Hypothesentests und Bayesian Clusterings 03/2019
  • Lisa Dawel PPG basierte Schätzung der Kardiovaskularen Parameter – ein nichtlinearer sparse regression Ansatz 01/2019
  • Ilaria Failla Robuste Clustering und Cluster Clusterenumerierungs Methoden für Multi-View Imaging 01/2019
  • Shuo Liu Emotionsklassifizierung aus physiologischen Signalen 01/2017
  • Bastian Alt Robuste und Adaptive Methoden für lineare inverse Probleme 12/2016
  • Burak Celik Herzraten Tracking Algorithmen für photopletysmographische Signale 10/2016
  • Björn Achenbach Nichtnegative blinde Quellentrennung für Sprachaktivitätserkennung – ein Überblick 10/2016
  • Jack Dagdagan Lokalisierung von Sprachquellen und Empfängern in nicht kalibrierten akustischen Sensornetzen 06/2016
  • Christian Sledtz Fortgeschrittene Methoden der Herzraten Extrahierung aus PPG Signalen 06/2016
  • Burak Celik Implementierung eines Algorithmus zur Herzratenüberwachung aus photopletysmographischen Signalen 06/2016
  • Jun Liu Diffusionsbasierte Schätzung der Klusteranzahl in verteilten Sensornetzwerken 05/2016
  • Jasin Machkour Robuste und adaptive Regression für schwach besetzte lineare Modelle 04/2016
  • Fabian Scheidt Schnelle Verfahren zur kooperativen Lokalisation in drahtlosen Sensornetzwerken 03/2016
  • Hauke Radtki Versuchsaufbau zur Simulation von Hirndruck (ICP) Signalen 07/2015
  • Fabian Scheidt Kooperative Lokalisierung mittels Sum-Product Algorithmen für drahtlose Sensornetzwerke 01/2015
  • Burak Celik Modelierung und Analyse von photoplethysmographischen Signalen 08/2015
  • Jasin Machkour Bootstrap und robuste Regression 08/2015
  • Patricia Binder Verteilte robuste und adaptive Signalklassifizierung in drahtlosen Sensornetzen 01/2015
  • Daniel Kalus Verteilte robuste und adaptive Signaldetektion in drahtlosen Sensornetzen 01/2015
  • Keerati Suibkitwanchai Programmierarbeiten zur Ausarbeitung eines Versuchs zur Biomedizinischen Signalverarbeitung (SITT Praktikant, Bangkok) 06/2014
  • Stefan Vlaski Robuste Bootstrap Methoden für die Signalverarbeitung 07/2013
  • Stefan Vlaski Implementation und Vergleich robuster Bootstrap Methoden für Konfidenzintervalle 07/2013
  • Jack Dagdagan Stationaritätstests bei ausreißerbehafteten Daten 06/2013
  • Johannes Weise Merkmalsextrahierung zur Emotionsquantifizierung bei psychophysiologischen Signalen 06/2013
  • Stefan Richter Emotionsklassifizierung anhand von psychophysiologischen Signalen 06/2013
  • Tim Schäck Parameterschätzung von ausreißerbehafteten psychophysiologischen Signalen 03/2013
  • Jack Dagdagan Ansätze zur Identifizierung von Musikinstrumenten 01/2013
  • Stefan Richter Signalmodellierung für Herzratenvariabilität und ein Vergleich bekannter Features 12/2012
  • Johannes Weise Ein Vergleich verschiedener Methoden zur Bestimmung der Kohärenz bei Biomedizinischen Daten 12/2012
  • Bin Han Vorhersage von nicht-stationären medizinischen Signalen: Signalzerlegung und robuste Statistik 04/2012
  • Tim Schäck Robuste modellbasierte Erkennung von Augenlidern in videokeratoskopischen Bildern 01/2012
  • Falco Strasser Entfernen von Bewegungsartefakten in EKG Signalen 12/2011
  • Thanh Minh Vu Robuste Schätzung für abhängige Daten 11/2011
  • Andrea Schnall Robuste Modellordnungsschätzung für die Hornhautoberfläche 10/2011
  • Nevine Demitri Binaurale Rückkopplungsunterdrückung 04/2011
  • Falco Strasser Robuste Filterung von Autoregressiven Prozessen 10/2010
  • Ivan Derwin Detektion von Deterministischen Signalen in Impulsivem Rauschen 09/2010
Loading...
Lade Daten von TUbiblio…

Fehler beim Laden der Daten

Beim Laden der Publikationsdaten von TUbiblio ist ein Fehler aufgetreten. Bitte versuchen Sie es zu einem späteren Zeitpunkt erneut.

  • {{ year }}

    • ({{ publication.date.toString().substring(0,4) }}):
      {{ publication.title }}. ({{ labels[publication.doc_status] }})
      In: {{ publication.series }}, {{ publication.volume }}, In: {{ publication.book_title }}, In: {{ publication.publication }}, {{ publication.journal_volume}} ({{ publication.number }}), SS. {{ publication.pagerange }}, {{ publication.place_of_pub }}, {{ publication.publisher }}, {{ publication.institution }}, {{ publication.event_location }}, {{ publication.event_dates }}, ISSN {{ publication.issn }}, e-ISSN {{ publication.eissn }}, ISBN {{ publication.isbn }}, [{{ labels[publication.type]?labels[publication.type]:publication.type }}]
    • […]

Anzahl der Einträge in dieser Liste: {{ publicationsList.length }}
Es werden nur die {{publicationsList.length}} neuesten Publikationen ausgegeben.

Vollständige Liste bei TUbiblio ansehen Diese Liste bei TUbiblio ansehen