Robust Signal Processing With Biomedical Applications

TECHNISCHE UNIVERSITÄT DARMSTADT

Michael Muma

SIGNAL PROCESSING GROUP

Electrical Engineering and Information Technology TU Darmstadt mmuma@spg.tu-darmstadt.de

Copyright

- The presented material is part of the lecture Robust Signal Processing With Biomedical Applications taught at Technische Universität Darmstadt.
- The lecture material is only intended for the students of this class.
- ► All remaining lecture material, figures and content is used in the legal framework of §60a UrhG¹.
- Dissemination or disclosure of any material of this course (documents, videos, animations, . . .) in parts or as a whole is not permitted.

https://www.e-learning.tu-darmstadt.de/dienstleistungen/rechtsfragen/urhwissg/index.de.jsp

SPG Lab for Body Worn Sensing of Physiological Parameters

Wearable Devices

Wearable Devices for Monitoring of Vital Signs:

- emerging technology enabling continuous monitoring of human vital signs
- great potential both for self-health tracking and for clinical applications
- combining multiple sensors yields "body area sensor networks"
- real-time physiological information via dynamic, noninvasive measurements

Available Hardware

Bitalino (r)evolution Plugged Kit BT

- electrodermal activity (EDA)
- electroencephalography (EEG)
- electrocardiography (ECG)
- electromyography (EMG)
- photoplethysmography (PPG)
- acceleration (ACC)
- blood pressure (BP)

Bitalino (r)evolution Plugged Kit BT-Set.

Available Hardware

AD Intstruments Teaching Suite, Mobil-O-Graph

- respiration (RSP)
- electrocardiography (ECG)
- photoplethysmography (PPG)
- blood pressure (BP)
- pulse-wave velocity (PWV)
- vascular age index (VAI)

AD Intstruments Teaching Suite, Mobil-O-Graph.

Possible Topics

Robust and Biomedical Signal Processing Seminar (WS20/21)

Possible topics using newly collected and available data from SPG Biolab

- Robust ECG Signal Estimation in Presence of Artifacts
- Robust HR Estimation for ECG Signals
- Robust HR Estimation for PPG Signals
- Robust HRV Estimation for PPG Signals
- Robust Cuffless Blood Pressure Monitoring
- ... your own project that uses our available hardware

May 26, 2020 | TU Darmstadt | Signal Processing Group | Dr. -Ing. Michael Muma | 8

Overview

Basics of ECG

- R-Peak detection algorithm
- Applications of robust location and scale estimation in ECG
- Artifact cancellation algorithm

Later in the course

- Robust spectral analysis
- Robust location-based filtering

Basics

Cardiac cycle:

- Systole (pumping)
- Diastole (filling)

Diastole (filling)

https://en.wikipedia.org/wiki/Cardiac_cycle

Basics

Electrocardiograph:

- graph of voltage versus time of the electrical activity of the heart using electrodes placed on the skin.
- electrodes measure the small electrical changes that are a consequence of cardiac muscle depolarization followed by repolarization during each cardiac cycle

Einthoven's triangle:

three bipolar limb leads

- Lead I: negative electrode on right arm, positive on left arm
- Lead II: negative electrode on right arm, positive on left leg
- Lead III: negative electrode on left arm, positive on left leg

Basics

Electrocardiograph:

- graph of voltage versus time of the electrical activity of the heart using electrodes placed on the skin.
- electrodes measure the small electrical changes that are a consequence of cardiac muscle depolarization followed by repolarization during each cardiac cycle

12-Lead ECG:

- clinical gold standard
- 6 precordial electrodes and 4 electrodes on limbs are used to get 12 leads
- combines the lead systems from Einthoven, Goldberger and Wilson
- provides information about vertical and horizontal axes

https://en.wikipedia.org/wiki/Electrocardiography

Basics

Three main components:

- 1. P wave: represents the depolarization of the atria
- 2. QRS complex: represents the depolarization of the ventricles
- 3. T wave: represents the repolarization of the ventricles

Basics

Three main components:

- 1. P wave: represents the depolarization of the atria
- 2. QRS complex: represents the depolarization of the ventricles
- 3. T wave: represents the repolarization of the ventricles

Basics

Three main components:

- 1. P wave: represents the depolarization of the atria
- 2. QRS complex: represents the depolarization of the ventricles
- 3. T wave: represents the repolarization of the ventricles

Heart Rate Variability (HRV)

Heart rate variability (HRV):

variation in the time interval between heartbeats

- nonstationary signal
- variation may contain indicators of current disease, or warnings about impending cardiac diseases
- popular noninvasive tool for assessing the activities of the autonomic nervous system
- requires estimating beat-to-beat interval from ECG

Popular R Peak Detection Algorithm

Pan and Tompkins Algorithm:

- Most commonly used method for R peak detection
- General steps:
 - 1. Bandpass filtering
 - 2. Differentiation
 - 3. Squaring
 - 4. Theshold computation & peak finding

Real-data example of ECG signal.

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng, 32(3), 230-236.

https://de.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector

Popular R Peak Detection Algorithm

Pan and Tompkins Algorithm:

- Most commonly used method for R peak detection
- General steps:
 - 1. Bandpass filtering
 - 2. Differentiation
 - 3. Squaring
 - 4. Theshold computation & peak finding

Result after bandpass filtering.

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng, 32(3), 230-236.

 $https://de.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector_linearity_li$

Popular R Peak Detection Algorithm

Pan and Tompkins Algorithm:

- Most commonly used method for R peak detection
- General steps:
 - 1. Bandpass filtering
 - 2. Differentiation
 - 3. Squaring
 - 4. Theshold computation & peak finding

Result after derivation.

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng, 32(3), 230-236.

 $https://de.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector_linearity_li$

Popular R Peak Detection Algorithm

Pan and Tompkins Algorithm:

- Most commonly used method for R peak detection
- General steps:
 - 1. Bandpass filtering
 - 2. Differentiation
 - 3. Squaring
 - 4. Theshold computation & peak finding

Result after squaring.

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng, 32(3), 230-236.

https://de.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector

Electrocardiogram (ECG) Popular R Peak Detection Algorithm

Pan and Tompkins Algorithm:

- Most commonly used method for R peak detection
- General steps:
 - 1. Bandpass filtering
 - 2. Differentiation
 - 3. Squaring
 - 4. Theshold computation & peak finding

Detected R peaks.

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng, 32(3), 230-236.

 $https://de.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector_linearity_li$

Robust Location Estimation for RMSSD

RMSSD: A popular metric of HRV is defined as

> The square root of the mean of the sum of the squares of differences between adjacent RR intervals

$$RMSSD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N-1} (RR_{i+1} - RR_i)^2}$$
(1)

Robust Location Estimation for RMSSD

• Note that for a vector $\mathbf{x} = (x_1, \dots, x_{N-1})^\top$:

$$\mathsf{mean}(\mathbf{x}) = \frac{1}{N-1} \sum_{i=1}^{N-1} (x_i)$$

with $x_i = (RR_{i+1} - RR_i)^2$, Eq. (1) becomes $RMSSD = \sqrt{\text{mean}(\mathbf{x})}$.

Application of robust estimators:

- Median: $RMSSD = \sqrt{\text{median}(\mathbf{x})}$
- Huber's M: RMSSD = $\sqrt{\hat{\mu}_{H,c}(\mathbf{x})}$
- Tukey's *M*: *RMSSD* = $\sqrt{\hat{\mu}_{T,c}(\mathbf{x})}$

	mean	median	Huber's M , $c_{.95}$	Tukey's <i>M</i> , c _{.95}
RMSSD (s)	1.0212	1.0156	1.0192	1.0192

Electrocardiogram (ECG) Robust Location Estimation for RMSSD

Artifact Cancellation

Multi-Resolution Thresholding Algorithm:

- An existing method for artifact cancellation.
- General steps:
 - 1. Stationary wavelet transform (SWT) of ECG
 - 2. Thresholding in each coefficient series
 - Artifact estimation via inverse stationary wavelet transform (ISWT)

Real-data example of ECG signal.

Strasser, F., Muma, M., & Zoubir, A. M. (2012). Motion artifact removal in ECG signals using multi-resolution thresholding. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (pp. 899-903)

Artifact Cancellation

Multi-Resolution Thresholding Algorithm:

- An existing method for artifact cancellation.
- General steps:
 - 1. Stationary wavelet transform (SWT) of ECG
 - 2. Thresholding in each coefficient series
 - Artifact estimation via inverse stationary wavelet transform (ISWT)

SWT of ECG signal.

Strasser, F., Murna, M., & Zoubir, A. M. (2012). Motion artifact removal in ECG signals using multi-resolution thresholding. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (pp. 899-903)

Artifact Cancellation

Multi-Resolution Thresholding Algorithm:

- An existing method for artifact cancellation.
- General steps:
 - 1. Stationary wavelet transform (SWT) of ECG
 - 2. Thresholding in each coefficient series
 - 3. Artifact estimation via inverse stationary wavelet transform (ISWT)

Threshold on fifth SWT coefficient.

Strasser, F., Muma, M., & Zoubir, A. M. (2012). Motion artifact removal in ECG signals using multi-resolution thresholding. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (pp. 899-903)

Artifact Cancellation

Multi-Resolution Thresholding Algorithm:

- An existing method for artifact cancellation.
- General steps:
 - 1. Stationary wavelet transform (SWT) of ECG
 - 2. Thresholding in each coefficient series
 - 3. Artifact estimation via inverse stationary wavelet transform (ISWT)

ISWT of ECG and artifact signal.

Strasser, F., Muma, M., & Zoubir, A. M. (2012). Motion artifact removal in ECG signals using multi-resolution thresholding. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (pp. 899-903)

 ${\tt https://www.spg.tu-darmstadt.de/media/spg/dwonloads/multi-resolution-thresholding.zip} \label{eq:https://www.spg.tu-darmstadt.de/media/spg/dwonloads/multi-resolution-thresholding.zip$

Artifact Cancellation

Multi-Resolution Thresholding Algorithm:

- An existing method for artifact cancellation.
- General steps:
 - 1. Stationary wavelet transform (SWT) of ECG
 - 2. Thresholding in each coefficient series
 - Artifact estimation via inverse stationary wavelet transform (ISWT)

Cleaned ECG signal.

Strasser, F., Muma, M., & Zoubir, A. M. (2012). Motion artifact removal in ECG signals using multi-resolution thresholding. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (pp. 899-903)

Electrocardiogram (ECG) Robust Location Estimation for RMSSD

RMSSD using different estimators for the mean.

	mean	median	Huber's M , $c = c_{.95}$	Tukey's M , $c = c_{.95}$
RMSSD (s)	0.8316	0.8359	0.8345	0.8363

Robust Scale Estimation for SDRR

SDRR: A second popular metric of HRV is defined as

The standard deviation of the differences between adjacent RR intervals (SDRR).

Robust Scale Estimation for SDRR

SDRR using sample standard deviation for vector $\mathbf{x} = (x_1, \dots, x_{N-1})^\top$:

$$\hat{\sigma}(\mathbf{x}) = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N-1}(x_i-\hat{\mu})^2}.$$

with $x_i = (RR_{i+1} - RR_i)^2$.

Application of robust scale estimators:

- Median absolute deviation: SDRR = madn(x), see Eq. (11) of Slides 03.
- Laplace MLE: $SDRR = \hat{\sigma}_{MLE,Laplace}(\mathbf{x})$, see Eq. (3) of Slides 04.
- Huber's *M*: *SDRR* = $\hat{\sigma}_{H,c}(\mathbf{x})$
- Tukey's M: SDRR = $\hat{\sigma}_{T,c}(\mathbf{x})$

Electrocardiogram (ECG) Robust Scale Estimation for SDRR

.

	std	madn	Laplace MLE	Huber's <i>M</i> , c _{.95}	Tukey's <i>M</i> , c _{.95}
SDRR (s)	0.1178	0.1332	0.1126	0.1121	0.1108

Electrocardiogram (ECG) Robust Scale Estimation for SDRR

Electrocardiogram (ECG) Robust Scale Estimation for SDRR

Excerpt of ECG after artifact cancellation.

SDRR using different estimators for the scale.

	std	madn	Laplace MLE	Huber's M , $c_{.95}$	Tukey's <i>M</i> , c _{.95}
SDRR (s)	0.1120	0.0463	0.0392	0.0635	0.0408

Outlook

Coming sections:

- will extend the basic concepts to enable robust regression, filtering, clustering, classification, time-series and spectral estimation,
- important tools, in biomedical engineering, for example, intracranial pressure monitoring, body-worn sensing, eye research