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Motivation: Classical Sampling
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Motivation: Classical Sampling Issues

Some applications

Radar

Spectral Imaging

Medical Imaging

Remote surveillance

Issue

Sampling rate is too
high!
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m
Reduction in the computation costs for measuring

signals that have an sparse representation.
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Compressed Sensing (CS) vs Classical Sampling

CS

x ∈ Rn

Random
measurements

Measurements
as inner
products
〈x,φ〉

Classical Sampling

Continuous signals

Infinite-length
signals
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Compressed Sensing (CS) vs Classical Sampling

CS

Recovery:
Non linear.

Classical Sampling

Recovery: linear
processing.
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Compressed sensing basics

x ∈ Rn is acquired taking m < n measurements

8
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Compressed Sensing Basics

x ∈ Rn is acquired taking m < n measurements

y = Ax (1)

y : Measurement
vector

A: CS sensing
matrix

m� n

9
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The Spectral Imaging Problem
I Push broom spectral imaging: Expensive, low sensing speed, senses

N ◊ N ◊ L voxels

I Optical Filters; Sequential sensing of N ◊ N ◊ L voxels; limited by
number of colors
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Why is this Important?

I Remote sensing and surveillance in the Visible, NIR, SWIR

I Devices are challenging in NIR and SWIR due to SWaP

I Medical imaging and other applications
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Introduction

Datacube

f = �◊

Compressive Measurements

g = H�◊ + w

Underdetermined system of equations

ˆf = �{min

◊
Îg ≠ H�◊Î

2

+ ·Î◊Î
1

}
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Matrix CASSI representation g = Hf

I Data cube: N ◊ N ◊ L

I Spectral bands: L

I Spatial resolution: N ◊ N

I Sensor size
N ◊ (N + L ≠ 1)

I V = N(N + L ≠ 1)
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Preliminar Results: K = 1 Random Snapshots
467 nm  K = 1 477 nm  K = 1 487 nm  K = 1

497 nm  K = 1 510 nm  K = 1 525 nm  K = 1 540 nm  K = 1

557 nm  K = 1 578 nm  K = 1 602 nm  K = 1 628 nm  K = 1
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Ultrafast Photography
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Since m < n, it is
possible to have

y =


Ax

Ax
′

with x 6= x
′

Motivation

Design A such that
x can be uniquely
identifiable from y,
with x in an
specific space of
signals

Even when m� n

10
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Characteristics of this space?

x =
n∑
i=1

φiθi (2)

x = Φθ (3)

with

Φ = [φ1, . . . ,φn]

θ = [θ1, . . . , θn]
T

Definition

A signal x is k sparse in the
basis frame Φ if exists θ ∈ Rn

with k = |supp(θ)| � n such
that x = Φθ

11
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Characteristics of this space ?

Definition

The space of k sparse signals Σk is defined as

Σk = {x : ‖x‖0 ≤ k} (4)

‖x‖0: Number of nonzero elements in x (It is
called the `0−norm)

12
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Examples of Sparse Signals

Figure: (a): Original Image. (b) Wavelet Representation.1

1Compressed Sensing: Theory and Applications, Eldar
13
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Compressible Signals

Real signals

Non exactly sparse.

Real signals

Good approxima-
tions on Σk

Compressible Signals

15
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Compressible Signals

Figure: (a): Original Image. (b) Wavelet Representation
(Keeping 10%).

16
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Compressible Signals

Real signals

Non exactly sparse.

Real signals

Good approxima-
tions on Σk

Compressible Signals

σk(x)p , min
x̂∈Σk

‖x− x̂‖p (5)

where ‖x‖p = (
∑n

i=1 |xi|p)
1
p

17
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Sensing Matrices A

Sensing matrix A

1

Identify uniquely x ∈ Σk

given

y = Ax

2

How to get x given y ?

18
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Sensing Matrices

Let Λ ⊂ {1, 2, . . . , n}

AΛ: The matrix that
contains all columns of
A indexed by Λ.

Example If Λ = {1, 3}

A =

 a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4


Then

AΛ =

 a1,1 a1,3

a2,1 a2,3

a3,1 a3,3


19
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Sensing Matrices: When supp(x) is known

Λ = supp(x)

y = Ax = AΛxΛ (6)

If AΛ is full column rank

xΛ = A†Λy

where

A†Λ = (A∗ΛAΛ)−1 A∗Λ

If AΛ is full rank

m ≥ k

If Λ is known

Recover x from a sub-
space.

20
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Sensing matrices: When supp(x) is unknown

CS central idea

How to choose A ?

Information of x is
preserved.

Recover uniquely x from
y = Ax

21
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Null Space Conditions

Null space of the matrix A

N (A) = {z : Az = 0}

Uniqueness in recovery

Ax 6= Ax
′
, x 6= x

′

A(x− x
′
) 6= 0 x,x

′ ∈ Σk

so (x− x
′
) /∈ N (A)

but (x− x
′
) ∈ Σ2k

Desired

N (A) ∩ Σ2k = ∅

22
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The spark of a given matrix A is the smallest number
of columns of A that are linearly dependent.

The procedure

Look for all combinations of r columns,
r = 2, 3, . . . , n.

If for any of the combinations we get linear
dependency, then the spark is given for the
number of vectors in that combination.

24
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The spark of a given matrix A is the smallest number
of columns of A that are linearly dependent.

Example

A =


1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Rank

Rank(A) = 4

Spark

Spark(A) = 2

25
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Example
A of size m× n with
m < n

All entries of A
represented by i.i.d
random variables.

Rank

Rank(A) = m

Spark

Spark(A) = m+ 1

Any submatrix of size
m×m is non singular

3

3”The rank of a random matrix, X. Feng”
30
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Uniqueness of sparse recovery

Theorem

For any vector y ∈ Rm, there exists at most one
signal x ∈ Σk such that y = Ax if and only if
spark(A) > 2k. For uniqueness we must have
that m ≥ 2k

32



Motivation Sparsity Models Sensing Matrices Sensing matrix constructions

Example
A of size m× n with
m < n

All entries of A are
i.i.d random
variables

Spark

Spark(A) = m+ 1

Unique recovery of x ∈ Σk

from y = Ax if

spark(A) > 2k

m+ 1 > 2k

k <
m+ 1

2
4

4”The rank of a random matrix, X. Feng”
35
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Robust Signal Recovery

CS

Where we are?

Spark Condition

NSP

Exactly sparse signals
⇓

Real signals?

51



Motivation Sparsity Models Sensing Matrices Sensing matrix constructions

The restricted isometry property (RIP)

CS

y = Ax (20)

x: Exactly
sparse.

x:
approximately
sparse.

Noise?

What happen if:

y = Ax + Noise
(21)

55
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The restricted isometry property (RIP)

Definition

A matrix A satisfies the restricted isometry
property (RIP) of order k if there exists a δk such
that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (22)

for all x ∈ Σk

56
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Coherence

RIP

⇓

NSP

⇓

Spark condition

Disadvantages

RIP: NP-hard
to calculate

NSP: NP-hard
to calculate

71
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Coherence

Definition

The coherence of a matrix A, denoted µ(A), is
the largest absolute inner product between any
two columns ai, aj of A:

µ(A) = max
1≤i<j≤n

|〈ai, aj〉|
‖ai‖2‖aj‖2

(30)

72
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Coherence

73
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Properties of the coherence

Theorem

Let A be a matrix of size m× n with m ≤ n,
(n ≥ 2) whose columns are normalized so that
‖ai‖ = 1 for all i. Then the coherence of A
satisfies √

n−m
m(n− 1)

≤ µ(A) ≤ 1 (31)

lower bound: Welch bound

74
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Coherence and the Spark

Lemma

For any matrix A

spark(A) ≥ 1 +
1

µ(A)
(35)

Unique recovery on Σk

spark(A) > 2k

84
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Uniqueness via coherence

Theorem (Uniqueness via coherence)

If

k <
1

2

(
1 +

1

µ(A)

)
(36)

then for each measurement vector y ∈ Rm there
exists at most one signal x ∈ Σk such that
y = Ax.

85
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Theorem

Let A be an m× n matrix that satisfies the RIP
of order 2k with constant δ ∈ (0, 1/2]. Then

m ≥ Ck log
(n
k

)
(37)

where C = (1/2) log(
√

24 + 1) ≈ 0.28

Johnson-Lindenstrauss lemma

89
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CS Where we are?

Given y and A find
x ∈ Σk such that

y = Ax (43)

What we have?

Conditions =
Unique x.

Spark
NSP
RIP
Coherence

How to design A

How to get x ?

99
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Outline

1 Recovery algorithms

2 Recovery Guarantees
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Recovery algorithms

The problem can be formulated as

x̂ = arg min ‖x‖0 s.t x ∈ B(y) (2)

Noise free recovery: B(y) = {x : Ax = y}

Noise: B(y) = {x : ‖Ax− y‖ ≤ ε}

2



Recovery algorithms Recovery Guarantees

If x is represented in a basis Φ such as x = Φθ,
the the problem is written as

θ̂ = arg min
θ
‖θ‖0 s.t. θ ∈ B(y) (3)

3
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x̂ = arg min ‖x‖0

s.t x ∈ B(y)

Check for different values
of k

Solve the problem for all
|Λ| = k

y −AΛxΛ

Expose extremely high computational cost.

4
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`1−recovery

Relaxation

x̂ = arg min ‖x‖1 s.t y = Ax (4)

Computationally feasible.

Can formulated as a (Linear programming) LP
problem: Basis Pursuit

5
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In the presence of noise

B(y) = {x : ‖Ax− y‖2 ≤ ε} (5)

It is possible to get a Lagrangian relaxation as

x̂ = arg min
x
‖x‖1 + λ‖Ax− y‖2 (6)

known as basis pursuit denoising

6
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Example(BP)

A =
1√
4.44


1.2 −1 −1.2 1 −1
−1 1 −1 1.2 1.2
1 1.2 −1 −1 1
1 −1 1 1 1



y =


0.2
0

2.2
0

 , with x =


√

4.44√
4.44
0
0
0



Solution

Using CVX
solve `1

relaxed
version.

x̂ =


2.1071
2.1071

0
0
0


Note:

√
4.44 ≈ 2.1071307

7
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Because the compu-
tational cost

It is clear why, replacing

x̂ = arg min ‖x‖0

s.t x ∈ B(y)

by

x̂ = arg min ‖x‖1 s.t y = Ax

is convenient

Not so trivial to see
how the solution of
`1−relaxation problem is
an approximate solution
to the original problem
`0 − problem.

13



6/50

The ¸1 Norm and Sparsity

I The ¸

0

norm is defined by: ÎxÎ
0

= #{i : x(i) ”= 0}
Sparsity of x is measured by its number of non-zero elements.

I The ¸

1

norm is defined by: ÎxÎ
1

=

q
i

|x(i)|
¸

1

norm has two key properties:
I Robust data fitting
I Sparsity inducing norm

I The ¸

2

norm is defined by: ÎxÎ
2

= (

q
i

|x(i)|2)

1/2

¸

2

norm is not e�ective in measuring sparsity of x
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Why ¸1 Norm Promotes Sparsity?

Given two N -dimensional signals:
I

x

1

= (1, 0, ..., 0) æ ”Spike” signal
I

x

2

= (1/

Ô
N, 1/

Ô
N, ..., 1/

Ô
N) æ ”Comb” signal

I
x

1

and x

2

have the same ¸

2

norm:
Îx

1

Î
2

= 1 and Îx

2

Î
2

= 1.

I However, Îx

1

Î
1

= 1 and
Îx

2

Î
1

=

Ô
N .
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¸1 Norm in Regression

I Linear regression is widely used in science and engineering.

Given A œ R

m◊n and b œ R

m; m > n

Find x s.t. b = Ax (overdetermined)
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¸1 Norm Regression

Two approaches:
I Minimize the ¸

2

norm of the residuals

min

xœR

n
Îb ≠ AxÎ

2

The ¸

2

norm penalizes large residuals
I Minimizes the ¸

1

norm of the residuals

min

xœR

n
Îb ≠ AxÎ

1

The ¸

1

norm puts much more weight on small residuals
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¸1 Norm Regression

m = 500, n = 150. A = randn(m, n) and b = randn(m, 1)

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

−3 −2 −1 0 1 2 3

20

40

60

80

100

120

140

160

¸

2

Residuals ¸

1

Residuals
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Greedy Algorithms

Greedy Pursuits

Built iteratively an esti-
mate of x starting by 0
and iteratively add new
components. For each
iteration the nonzero
components of x are op-
timized.

Thresholding algo-
rithms

Built iteratively an es-
timate of x. For
each iteration a sub-
set of nonzero compo-
nents of x are selected,
while other components
are removed (make their
valus 0).

15
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Greedy Algorithms

Greedy Pursuits

Matching Pursuit
(MP).

Orthogonal
Matching Pursuit
(OMP).

Thresholding algo-
rithms

Compressive
Sampling
Matching Pursuit
(CoSaMP).

Iterative Hard
Thresholding
(IHT).

16
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Intuition

OMP

Find the column of A most
correlated with y −Ax̂

Determine the support

Update all coefficients
over the support.

MP

Find the column of A most
correlated with y −Ax̂

Determine the support

Update the coefficient
with the related column.

17
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Matching Pursuit (MP)

min
i,x
‖y − aix‖2

i = arg max
j

(aT
j y)2

‖aj‖2
2

x =
aT
i y

‖ai‖2
2

MP update

with r0 = y

r` = r`−1−
aT
i r`−1

‖ai‖2
2

ai

x̂` ← x̂`−1

x̂`|i ←
aT
i r`−1

‖ai‖2
2

19
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Iterative Hard Thresholding (IHT) Variant of
CoSaMP

IHT update

x̂i = T (x̂i−1 + AT (y −Ax̂i−1), k)

22
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Example

Comparison

`1 − optimization

OMP

MP

IHT

CoSaMP

Error versus sparsity
level

A is of dimension
512× 1024

A: Entries taken from
N (0, 1)

A: Random partial
Fourier matrix.

For each value of
sparsity k, a k−sparse
vector of dimension
n× 1 is built.

The nonzero locations
in x are selected at
random, and the values
are taken from N (0, 1). 23
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Figure: Comparison of the performance of different
reconstruction algorithms in terms of the sparsity level. (a)
Gaussian matrix (b) Random partial Fourier matrix

24
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Recovery guarantees

Guarantees

RIP-based.

Coherence
based.

Pessimistic

Recovery is possible
for much more
relaxed versions
than those stated
by some Theoretic
results.

26
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Signal recovery in noise

Theorem (RIP-based noisy `1 recovery)

Suppose that A satisfies the RIP of order 2k with
δ2k <

√
2− 1, and let y = Ax + e where

‖e‖2 ≤ ε. Then, when B(y) = {z : ‖Az− y‖2},
the solution x̂ to

x̂ = arg min ‖x‖1 s.t y = Ax (11)

obeys

‖x̂− x‖2 ≤ C0
σk(x)1√

k
+ C2ε (12)

32
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RIP Guarantees

Difficult to
calculate the
RIP for large
size matrices

Coherence Guaran-
tees

Exploit advantages
of using coherence
for structured ma-
trices.

34
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Theorem (Coherence-based `1 recovery with
bounded noise)

Suppose that A has coherence µ and that x ∈ Σk

with k < (1/µ+ 1)/4. Furthermore, suppose that
we obtain measurements of th form y = Ax + e
with γ = ‖e‖2. Then when
B(y) = {z : ‖Az− y‖2} with ε > γ, the solution
x̂ to

x̂ = arg min ‖x‖1 s.t y = Ax (14)

obeys

‖x− x̂‖2 ≤
γ + ε√

1− µ(4k − 1)
(15)

35
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Guarantees on greedy methods

Theorem (RIP-based OMP recovery)

Suppose that A satisfies the RIP of order k + 1
with δk+1 < 1/(3

√
k) and let y = Ax. Then OMP

can recover a k−sparse signal exactly in k
iterations.

37
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Theorem (RIP-based thresholding recovery)

Suppose that A satisfies the RIP or order ck with
constant δ and let y = Ax + e where ‖e‖2 ≤ ε.
Then the outputs x̂ of the CoSaMP, subspace
pursuit, and IHT algorithms obeys

‖x̂− x‖2 ≤ C1σk(x)2 + C2
σk(x)1√

k
+ C3ε (19)

The requirements on the parameters c, δ of the
RIP and the values of C1, C2 and C3 are specific
to each algorithm.

38
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