

Introduction to Compressed Sensing

Alejandro Parada, Gonzalo Arce

University of Delaware

August 25, 2016

Motivation: Classical Sampling

Motivation: Classical Sampling Issues

Some applications

- Radar
- Spectral Imaging
- Medical Imaging
- Remote surveillance

Issue

Sampling rate is too high!

Compressed Sensing (CS)

Motivation

Compressed Sensing (CS) vs Classical Sampling

Classical Sampling

Continuous signals
Infinite-length

signals

Motivation

Compressed Sensing (CS) vs Classical Sampling

Classical Sampling

 Recovery: linear processing.

Compressed sensing basics

 $\mathbf{x} \in \mathbb{R}^n$ is acquired taking m < n measurements

Compressed Sensing Basics

 $\mathbf{x} \in \mathbb{R}^n$ is acquired taking m < n measurements

matrix

 $m \ll n$

<text>

 Optical Filters; Sequential sensing of N × N × L voxels; limited by number of colors

Why is this Important?

Remote sensing and surveillance in the Visible, NIR, SWIR

Devices are challenging in NIR and SWIR due to SWaP

■▶▲■▶ ■ のへで

3/69

Medical imaging and other applications

Introduction Ν M **Compressive Measurements** Datacube $g = H\Psi\theta + w$ $f = \Psi \theta$

Underdetermined system of equations

$$\widehat{\mathbf{f}} = \mathbf{\Psi} \{ \min_{oldsymbol{ heta}} \| \mathbf{g} - \mathbf{H} \mathbf{\Psi} oldsymbol{ heta} \|_2 + au \| oldsymbol{ heta} \|_1 \}$$

0

8/69

∢ ≣ ▶

E

590

<ロ> <四> <四> <四> < 四> < 四> < 三> 三日 590 14/69

0

Preliminar Results: K = 1 **Random Snapshots**

***** 45/69

Ultrafast Photography

Single-shot compressed ultrafast photography at one hundred billion frames per second

Since m < n, it is possible to have

$$\mathbf{y} = \left\{ egin{array}{c} \mathbf{A}\mathbf{x} \\ \mathbf{A}\mathbf{x}^{'} \end{array}
ight.$$

with
$$\mathbf{x} \neq \mathbf{x}'$$

Motivation

 Design A such that x can be uniquely identifiable from y, with x in an specific space of signals

Even when $m \ll n$

with

Characteristics of this space?

(2)

$$\mathbf{x} = \sum_{i=1}^n oldsymbol{\phi}_i heta_i$$
 $\mathbf{x} = oldsymbol{\Phi} oldsymbol{ heta}$ $\mathbf{\Phi} = [oldsymbol{\phi}_1, \dots, oldsymbol{\phi}_n]$ $oldsymbol{ heta} = [oldsymbol{ heta}_1, \dots, oldsymbol{ heta}_n]^T$

Definition

(3) A signal **x** is k sparse in the basis frame $\boldsymbol{\Phi}$ if exists $\boldsymbol{\theta} \in \mathbb{R}^n$ with $k = |\operatorname{supp}(\boldsymbol{\theta})| \ll n$ such that $\mathbf{x} = \boldsymbol{\Phi}\boldsymbol{\theta}$

Characteristics of this space ?

Definition

The space of k sparse signals Σ_k is defined as

$$\Sigma_k = \{ \mathbf{x} : \|\mathbf{x}\|_0 \le k \}$$
(4)

 $\|\mathbf{x}\|_0$: Number of nonzero elements in \mathbf{x} (It is called the ℓ_0 -norm)

Examples of Sparse Signals

Figure: (a): Original Image. (b) Wavelet Representation.¹

¹Compressed Sensing: Theory and Applications, Eldar

Compressible Signals

Real signals

Non exactly sparse.

Real signals

Good approximations on Σ_k

Compressible Signals

Compressible Signals

Figure: (a): Original Image. (b) Wavelet Representation (Keeping 10%).

Compressible Signals

Real signals

Non exactly sparse.

Real signals

Good approximations on Σ_k

Compressible Signals

$$\sigma_k(\mathbf{x})_p \triangleq \min_{\hat{x} \in \Sigma_k} \left\| \mathbf{x} - \hat{\mathbf{x}} \right\|_p \quad (5)$$

where $\|\mathbf{x}\|_{p} = (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}}$

Sensing Matrices A

Sensing matrix A

I dentify uniquely
$$\mathbf{x} \in \Sigma_k$$
 given

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

2

How to get \mathbf{x} given \mathbf{y} ?

Sensing Matrices

Example If
$$\Lambda = \{1, 3\}$$

Let
$$\Lambda \subset \{1, 2, \dots, n\}$$
 $\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \end{bmatrix}$

 \mathbf{A}_{Λ} : The matrix that contains all columns of Then \mathbf{A} indexed by Λ .

$$\mathbf{A}_{\Lambda} = \left[egin{array}{cc} a_{1,1} & a_{1,3} \ a_{2,1} & a_{2,3} \ a_{3,1} & a_{3,3} \end{array}
ight]$$

Sensing Matrices: When supp(x) is known

$$\Lambda = \operatorname{supp}(\mathbf{x})$$

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{A}_{\Lambda}\mathbf{x}_{\Lambda}$$
 (6) If \mathbf{A}_{Λ} is full rank

If \mathbf{A}_{Λ} is full column rank

$$m \ge k$$

$$\mathbf{x}_{\Lambda} = \mathbf{A}_{\Lambda}^{\dagger} \mathbf{y}$$

where

$$\mathbf{A}^{\dagger}_{\Lambda} = \left(\mathbf{A}^{*}_{\Lambda}\mathbf{A}_{\Lambda}
ight)^{-1}\mathbf{A}^{*}_{\Lambda}$$

If Λ is know	wn		
Recover \mathbf{x}	from	a	sub-
space.			

Sensing matrices: When supp(x) is unknown

CS central idea

How to choose \mathbf{A} ?

- Information of **x** is preserved.
- Recover uniquely x from
 y = Ax

Sensing Matrices

Null Space Conditions

Null space of the matrix **A**

$$\mathcal{N}(\mathbf{A}) = \{\mathbf{z} : \mathbf{A}\mathbf{z} = \mathbf{0}\}$$

Uniqueness in recovery

$$\mathbf{A}\mathbf{x} \neq \mathbf{A}\mathbf{x}', \quad \mathbf{x} \neq \mathbf{x}'$$
$$\mathbf{A}(\mathbf{x} - \mathbf{x}') \neq \mathbf{0} \quad \mathbf{x}, \mathbf{x}' \in \Sigma_k$$
so $(\mathbf{x} - \mathbf{x}') \notin \mathcal{N}(\mathbf{A})$

but
$$(\mathbf{x} - \mathbf{x}') \in \Sigma_{2k}$$

Desired
$$\mathcal{N}(\mathbf{A}) \cap \Sigma_{2k} = \emptyset$$

The **spark** of a given matrix **A** is the smallest number of columns of **A** that are linearly dependent.

The procedure

- Look for all combinations of r columns, $r = 2, 3, \ldots, n$.
- If for any of the combinations we get linear dependency, then the spark is given for the number of vectors in that combination.

The **spark** of a given matrix **A** is the smallest number of columns of **A** that are linearly dependent.

Example

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Rank

$$\operatorname{Rank}(\mathbf{A}) = 4$$

Spark

$$\operatorname{Spark}(\mathbf{A}) = 2$$

Example

A of size $m \times n$ with m < n

 All entries of A represented by i.i.d random variables.

Rank

$$\operatorname{Rank}(\mathbf{A}) = m$$

Spark

$$\operatorname{Spark}(\mathbf{A}) = m + 1$$

Any submatrix of size $m \times m$ is non singular

3

³"The rank of a random matrix, X. Feng"

Uniqueness of sparse recovery

Theorem

For any vector $\mathbf{y} \in \mathbb{R}^m$, there exists at most one signal $\mathbf{x} \in \Sigma_k$ such that $\mathbf{y} = \mathbf{A}\mathbf{x}$ if and only if $spark(\mathbf{A}) > 2k$. For uniqueness we must have that $m \ge 2k$

Spark

$$\operatorname{Spark}(\mathbf{A}) = m + 1$$

Example A of size $m \times n$ with m < n

> All entries of A are i.i.d random variables

Unique recovery of $\mathbf{x} \in \Sigma_k$ from $\mathbf{y} = \mathbf{A}\mathbf{x}$ if

$$\operatorname{spark}(\mathbf{A}) > 2k$$

$$m+1 > 2k$$
$$k < \frac{m+1}{2}$$

4

⁴"The rank of a random matrix, X. Feng"

Motivation

Sensing Matrices

Robust Signal Recovery

Exactly sparse signals \downarrow Real signals?

Motivation

The restricted isometry property (RIP)

Noise?

What happen if:

```
\mathbf{y} = \mathbf{A}\mathbf{x} + \text{Noise}
(21)
```

The restricted isometry property (RIP)

Definition

A matrix **A** satisfies the restricted isometry property (RIP) of order k if there exists a δ_k such that

 $(1 - \delta_k) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \delta_k) \|\mathbf{x}\|_2^2 \qquad (22)$ for all $\mathbf{x} \in \Sigma_k$

Coherence

Coherence

Definition

The coherence of a matrix \mathbf{A} , denoted $\mu(\mathbf{A})$, is the largest absolute inner product between any two columns $\mathbf{a}_i, \mathbf{a}_j$ of \mathbf{A} :

$$\mu(\mathbf{A}) = \max_{1 \le i < j \le n} \frac{|\langle \mathbf{a}_i, \mathbf{a}_j \rangle|}{\|\mathbf{a}_i\|_2 \|\mathbf{a}_j\|_2}$$
(30)

Coherence

Properties of the coherence

Theorem

Let **A** be a matrix of size $m \times n$ with $m \leq n$, $(n \geq 2)$ whose columns are normalized so that $\|\mathbf{a}_i\| = 1$ for all *i*. Then the coherence of **A** satisfies

$$\sqrt{\frac{n-m}{m(n-1)}} \le \mu(\mathbf{A}) \le 1 \tag{31}$$

lower bound: Welch bound

(35)

Coherence and the Spark

Lemma

For any matrix \mathbf{A}

$$spark(\mathbf{A}) \ge 1 + \frac{1}{\mu(\mathbf{A})}$$

Unique recovery on Σ_k

$$\operatorname{spark}(\mathbf{A}) > 2k$$

Uniqueness via coherence

Theorem (Uniqueness via coherence)

If

$$k < \frac{1}{2} \left(1 + \frac{1}{\mu(\mathbf{A})} \right) \tag{36}$$

then for each measurement vector $\mathbf{y} \in \mathbb{R}^m$ there exists at most one signal $\mathbf{x} \in \Sigma_k$ such that $\mathbf{y} = \mathbf{A}\mathbf{x}$.

Theorem

Let **A** be an $m \times n$ matrix that satisfies the RIP of order 2k with constant $\delta \in (0, 1/2]$. Then

$$m \ge Ck \log\left(\frac{n}{k}\right) \tag{37}$$

where $C = (1/2) \log(\sqrt{24} + 1) \approx 0.28$

Johnson-Lindenstrauss lemma

How to get \mathbf{x} ?

1 Recovery algorithms

2 Recovery Guarantees

Recovery algorithms

The problem can be formulated as

$$\hat{\mathbf{x}} = \arg\min \|\mathbf{x}\|_0 \quad \text{s.t} \quad \mathbf{x} \in \mathcal{B}(\mathbf{y}) \quad (2)$$

- Noise free recovery: $\mathcal{B}(\mathbf{y}) = {\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{y}}$
- Noise: $\mathcal{B}(\mathbf{y}) = {\mathbf{x} : ||\mathbf{A}\mathbf{x} \mathbf{y}|| \le \varepsilon}$

If **x** is represented in a basis $\boldsymbol{\Phi}$ such as $\mathbf{x} = \boldsymbol{\Phi}\boldsymbol{\theta}$, the the problem is written as

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|_0 \quad \text{s.t.} \quad \boldsymbol{\theta} \in \mathcal{B}(\mathbf{y})$$
 (3)

$$\hat{\mathbf{x}} = rg\min \|\mathbf{x}\|_0$$

s.t $\mathbf{x} \in \mathcal{B}(\mathbf{y})$

- Check for different values of k
- Solve the problem for all $|\Lambda| = k$

$$\mathbf{y} - \mathbf{A}_\Lambda \mathbf{x}_\Lambda$$

Expose extremely high computational cost.

Relaxation

$$\hat{\mathbf{x}} = \arg\min \|\mathbf{x}\|_1 \quad \text{s.t} \quad \mathbf{y} = \mathbf{A}\mathbf{x} \quad (4)$$

Computationally feasible.

Can formulated as a (Linear programming) LP problem: *Basis Pursuit*

In the presence of noise

$$\mathcal{B}(\mathbf{y}) = \{\mathbf{x} : \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \varepsilon\}$$
(5)

It is possible to get a Lagrangian relaxation as

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 + \lambda \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \quad (6)$$

known as basis pursuit denoising

Example(BP)	Solution
$\mathbf{A} = \frac{1}{\sqrt{4.44}} \begin{bmatrix} 1.2 & -1 & -1.2 & 1 & -1 \\ -1 & 1 & -1 & 1.2 & 1.2 \\ 1 & 1.2 & -1 & -1 & 1 \\ 1 & -1 & 1 & 1 & 1 \end{bmatrix}$	Using CVX solve ℓ_1 relaxed version.
$\mathbf{y} = \begin{bmatrix} 0.2\\0\\2.2\\0 \end{bmatrix}, \text{with} \mathbf{x} = \begin{bmatrix} \sqrt{4.44}\\\sqrt{4.44}\\0\\0\\0 \end{bmatrix}$	$\hat{\mathbf{x}} = \begin{bmatrix} 2.1071\\ 2.1071\\ 0\\ 0\\ 0 \end{bmatrix}$

Note: $\sqrt{4.44} \approx 2.1071307$

Because the computational cost

It is clear why, replacing

 $\hat{\mathbf{x}} = \arg\min \|\mathbf{x}\|_0$

s.t
$$\mathbf{x} \in \mathcal{B}(\mathbf{y})$$

Not so trivial to see how the solution of ℓ_1 -relaxation problem is an approximate solution to the original problem $\ell_0 - problem$.

 $\hat{\mathbf{x}} = \arg\min \|\mathbf{x}\|_1 \quad \text{s.t} \quad \mathbf{y} = \mathbf{A}\mathbf{x}$

is convenient

by

The ℓ_1 Norm and Sparsity

- ► The ℓ₀ norm is defined by: ||x||₀ = #{i : x(i) ≠ 0} Sparsity of x is measured by its number of non-zero elements.
- The ℓ_1 norm is defined by: $||x||_1 = \sum_i |x(i)|$ ℓ_1 norm has two key properties:
 - Robust data fitting
 - Sparsity inducing norm
- The ℓ_2 norm is defined by: $||x||_2 = (\sum_i |x(i)|^2)^{1/2}$ ℓ_2 norm is not effective in measuring *sparsity* of x

Why ℓ_1 Norm Promotes Sparsity?

Given two N-dimensional signals:

•
$$x_1 = (1, 0, ..., 0) \rightarrow$$
 "Spike" signal
• $x_2 = (1/\sqrt{N}, 1/\sqrt{N}, ..., 1/\sqrt{N}) \rightarrow$ "Comb" signal

X 2

▶ ▲ Ē ▶ Ē ∽ � ♀ 7/50

Ξ.

Ύ1

• x_1 and x_2 have the same ℓ_2 norm: $||x_1||_2 = 1$ and $||x_2||_2 = 1$.

• However,
$$||x_1||_1 = 1$$
 and $||x_2||_1 = \sqrt{N}$.

ℓ_1 Norm in Regression

Linear regression is widely used in science and engineering.

Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$; m > n

Find x s.t. b = Ax (overdetermined)

b

ℓ_1 Norm Regression

Two approaches:

• Minimize the ℓ_2 norm of the residuals

 $\min_{x \in R^n} \|b - Ax\|_2$

The ℓ_2 norm penalizes large residuals

• Minimizes the ℓ_1 norm of the residuals

 $\min_{x \in \mathbb{R}^n} \|b - Ax\|_1$

The ℓ_1 norm puts much more weight on small residuals

ℓ_1 Norm Regression

m = 500, n = 150. A = randn(m, n) and b = randn(m, 1)

▲ ■ ▶ ■ かへで 10/50

Đ.

Greedy Algorithms

Greedy Pursuits

Built iteratively an estimate of \mathbf{x} starting by $\mathbf{0}$ and iteratively add new components. For each iteration the nonzero components of \mathbf{x} are optimized.

Thresholding algorithms

Built iteratively an estimate of \mathbf{x} . For each iteration a subset of nonzero components of \mathbf{x} are selected, while other components are removed (make their valus 0).

algo-

Greedy Algorithms

Greedy Pursuits

- Matching Pursuit (MP).
- Orthogonal Matching Pursuit (OMP).

Thresholding rithms

- Compressive Sampling Matching Pursuit (CoSaMP).
- Iterative Hard Thresholding (IHT).

Intuition

Recovery Guarantees

OMP

- Find the column of \mathbf{A} most correlated with $\mathbf{y} \mathbf{A}\hat{\mathbf{x}}$
- Determine the support
- Update all coefficients over the support.

MP

- Find the column of \mathbf{A} most correlated with $\mathbf{y} \mathbf{A}\hat{\mathbf{x}}$
- Determine the support
- Update the coefficient with the related column.

Matching Pursuit (MP) $\min_{i,x} \|\mathbf{y} - \mathbf{a}_i x\|^2$

$$i = \arg \max_{j} \frac{(\mathbf{a}_{j}^{T} \mathbf{y})^{2}}{\|\mathbf{a}_{j}\|_{2}^{2}}$$
$$x = \frac{\mathbf{a}_{i}^{T} \mathbf{y}}{\|\mathbf{a}_{i}\|_{2}^{2}}$$

MP update
with
$$\mathbf{r}_0 = \mathbf{y}$$

 $\mathbf{r}_{\ell} = \mathbf{r}_{\ell-1} - \frac{\mathbf{a}_i^T \mathbf{r}_{\ell-1}}{\|\mathbf{a}_i\|_2^2} \mathbf{a}_i$
 $\hat{\mathbf{x}}_{\ell} \leftarrow \hat{\mathbf{x}}_{\ell-1}$
 $\hat{\mathbf{x}}_{\ell}|_i \leftarrow \frac{\mathbf{a}_i^T \mathbf{r}_{\ell-1}}{\|\mathbf{a}_i\|_2^2}$

Iterative Hard Thresholding (IHT) Variant of CoSaMP

IHT update

$$\hat{\mathbf{x}}_i = \mathcal{T}(\hat{\mathbf{x}}_{i-1} + \mathbf{A}^T(\mathbf{y} - \mathbf{A}\hat{\mathbf{x}}_{i-1}), k)$$

Example

Comparison

- $\ell_1 optimization$
- OMP
- MP
- IHT
- CoSaMP

Error versus sparsity level

- **A** is of dimension 512 × 1024
- A: Entries taken from $\mathcal{N}(0,1)$
- A: Random partial Fourier matrix.
- For each value of sparsity k, a k-sparse vector of dimension n × 1 is built.
- The nonzero locations in x are selected at random, and the values are taken from N(0, 1).

Figure: Comparison of the performance of different reconstruction algorithms in terms of the sparsity level. (a) Gaussian matrix (b) Random partial Fourier matrix

Recovery guarantees

Guarantees

- RIP-based.
- Coherence based.

Pessimistic

Recovery is possible for much more relaxed versions than those stated by some Theoretic results.

Signal recovery in noise

Theorem (RIP-based noisy ℓ_1 recovery)

Suppose that **A** satisfies the RIP of order 2k with $\delta_{2k} < \sqrt{2} - 1$, and let $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ where $\|\mathbf{e}\|_2 \leq \varepsilon$. Then, when $\mathcal{B}(\mathbf{y}) = \{\mathbf{z} : \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2\}$, the solution $\hat{\mathbf{x}}$ to

 $\hat{\mathbf{x}} = \arg\min \|\mathbf{x}\|_1 \quad s.t \quad \mathbf{y} = \mathbf{A}\mathbf{x}$ (11)

obeys

$$\|\hat{\mathbf{x}} - \mathbf{x}\|_2 \le C_0 \frac{\sigma_k(\mathbf{x})_1}{\sqrt{k}} + C_2 \varepsilon \tag{12}$$

RIP Guarantees

 Difficult to calculate the RIP for large size matrices Coherence Guarantees

Exploit advantages of using coherence for structured matrices.

Theorem (Coherence-based ℓ_1 recovery with bounded noise)

Suppose that **A** has coherence μ and that $\mathbf{x} \in \Sigma_k$ with $k < (1/\mu + 1)/4$. Furthermore, suppose that we obtain measurements of th form $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ with $\gamma = \|\mathbf{e}\|_2$. Then when $\mathcal{B}(\mathbf{y}) = \{\mathbf{z} : \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2\}$ with $\varepsilon > \gamma$, the solution $\hat{\mathbf{x}}$ to

$$\hat{\mathbf{x}} = \arg\min \|\mathbf{x}\|_1 \quad s.t \quad \mathbf{y} = \mathbf{A}\mathbf{x}$$
(14)

obeys

$$\|\mathbf{x} - \hat{\mathbf{x}}\|_2 \le \frac{\gamma + \varepsilon}{\sqrt{1 - \mu(4k - 1)}} \tag{15}$$

Guarantees on greedy methods

Theorem (RIP-based OMP recovery)

Suppose that **A** satisfies the RIP of order k + 1with $\delta_{k+1} < 1/(3\sqrt{k})$ and let $\mathbf{y} = \mathbf{A}\mathbf{x}$. Then OMP can recover a k-sparse signal exactly in kiterations.

Theorem (RIP-based thresholding recovery)

Suppose that **A** satisfies the RIP or order ck with constant δ and let $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ where $\|\mathbf{e}\|_2 \leq \varepsilon$. Then the outputs $\hat{\mathbf{x}}$ of the CoSaMP, subspace pursuit, and IHT algorithms obeys

$$\|\hat{\mathbf{x}} - \mathbf{x}\|_2 \le C_1 \sigma_k(\mathbf{x})_2 + C_2 \frac{\sigma_k(\mathbf{x})_1}{\sqrt{k}} + C_3 \varepsilon \qquad (19)$$

The requirements on the parameters c, δ of the RIP and the values of C_1, C_2 and C_3 are specific to each algorithm.