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Introduction
Motivation

Classical Theoretical Approach to Estimation

I strong and precise assumptions
I e.g., estimators, detectors or filters optimal under nominal distribution
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Optimality only achieved when assumptions hold exactly.
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Introduction
Motivation

Real World Data in Signal Processing

I in many cases Gaussian assumption well justified
I measurement campaigns confirmed impulsive (heavy-tailed) noise, [4] e.g. in

I outdoor and indoor mobile communication channels
I radar and sonar systems
I biomedical sensor (array) measurements, e.g. magnetic resonance imaging

(MRI)
I outliers in the measurements, e.g. in

I geolocation position estimation and tracking (NLOS)
I short-term load forecasting
I motion artifacts for portable medical devices

Performance of optimal procedures may deteriorate significantly,
even for minor departures from assumed model.
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Introduction
Motivation

Gaussianity
I Assume the noise is distributed according to N (0,σ2). Then, the ’optimal’ parametric

estimator for µ is the sample mean (maximum likelihood estimator).

I The Gaussian assumption was introduced by Gauß in 1797. It was the distribution
which resulted in the sample mean as the optimal estimator for the mean.

Gaussianity

’Everyone believed in the normal distribution, the mathematicians because they
thought it was an experimental fact, the experimenters because they thought it
was a mathematical theorem.’

’Normality is a myth; there never has, and never will be, a normal distribution’,
[R. C. Geary 1947]
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Introduction
Motivation

Applicability of Robust Methods

Nonparametric Robust Parametric
Description Model specified in

terms of general
properties

Parametric mo-
del allowing for
deviations

Model completely
specified by several
parameters

Ideal Performance Mediocre/Satisfactory Good Very Good/Excellent
Range of Validity Large Medium Small

Robust theory is the most appropriate approach to solving real-life problems.
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Introduction
Motivation

Detecting Outliers
I Why not simply manually discard the outliers? Or find a simple rejection rule?

I Large size of the data sets.
I With an increasing dimension of the data, simple robust methods, based on

outlier rejection, no longer work.

I Modern, sophisticated robust statistics aim at
1. offering protection against complete breakdown (disasters) in performance due

to outliers,
2. reducing the loss in efficiency when deviations from the nominal statistical

model occur.

I The concept of optimal robustness can be defined in different ways and this
leads to different robust estimators.
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Introduction
Motivation

Detecting Outliers
I An outlier is tightly linked to the considered assumptions or model.
I an observation that is flagged as outlying relative to some model, may not be deemed

to be outlying relative to another model.

Difficulty to detect outliers varies depending on the situation:
I 1 and 2 dimensions: relatively easy to detect by diagnostic methods, sometimes it is

even possible via visual inspection
I Higher dimensions: Harder but feasible using diagnostic methods, though impossible

via visual inspection
I Correlated signals or time series: very challenging
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Introduction
Robustness: Intuitive Definitions

Robustness: The Bridge Analogy

movie source: archive.org

I [Hampel et al., 2000]:
’Robustness theory is the stability theory of statistical procedures.’

I [Huber et al., 2009]:
’Robustness signifies insensitivity to small deviations from the
assumptions.’
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Aims of Robust Methods
Approximate Quotes by Huber and Hampel

Aim 1: Near Optimality [Huber-09]:
‘The procedure should behave “reasonably well” at the assumed model.’
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Aims of Robust Methods
Approximate Quotes by Huber and Hampel

Aim 1: Near Optimality [Huber-09]:
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Aim 2: Qualitative Robustness [Hampel-85]:
‘The effect of an erroneous observation, even if it takes an arbitrary value,
should not have a large impact on the method.’
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Aims of Robust Methods
Approximate Quotes by Huber and Hampel

Aim 1: Near Optimality [Huber-09]:
‘The procedure should behave “reasonably well” at the assumed model.’

Aim 2: Qualitative Robustness [Hampel-85]:
‘The effect of an erroneous observation, even if it takes an arbitrary value,
should not have a large impact on the method.’

Aim 3: Quantitative Robustness [Huber-09]:
’Somewhat larger deviations from the model should not cause a
catastrophe.’

How can I quantify, if my estimator fulfills these aims?
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Measuring Robustness
Intuitive Definitions

Measure 1: Relative Efficiency
I increase in the variance (σ2) of the estimates at the assumed model compared to the

optimal method
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Measuring Robustness
Intuitive Definitions

Measure 2: Influence Function (IF)
I bias impact of an infinitesimal contamination on the estimator, standardized by the

fraction of contamination
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bounded and continuous IF→ qualitative robustness
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Measuring Robustness
Intuitive Definitions

Measure 3: Maximum Bias Curve (MBC)
I maximum possible bias of an estimator plotted over the fraction of outliers
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Measuring Robustness
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I maximum possible bias of an estimator plotted over the fraction of outliers
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Measure 4: Breakdown Point (BP)
I maximal fraction of outliers that an estimator can handle (0 ≤ BP ≤ 50%)
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Basic Concepts: Estimating the Mean
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Basic Concepts
Robustifying the Location Model

Location Model
Xn = µ + Vn

I Xn: observable process
I µ: “true” (unknown) value
I Vn: random error process with probability distribution function FV (v )

Task: estimate µ, given i.i.d. observations xn, n = 1, ... , N.
I fundamental task in many statistical and engineering problems
I finds typical or central value that best describes the data

Most commonly used estimator: sample mean (average)

Is this a reliable/optimal/robust estimator?
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Basic Concepts
Maximum Likelihood Estimation

Maximum Likelihood (ML) Estimate of µ

µ̂ML = arg max
µ

N∑
n=1

log fX (xn|µ)

I µ̂ML solves:
N∑

n=1

ψ(xn − µ̂ML) = 0,

where
ψ(x) = −f ′X (x)/fX (x).
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Basic Concepts
Maximum Likelihood Estimation

Maximum Likelihood (ML) Estimate of µ

µ̂ML = arg max
µ

N∑
n=1

log fX (xn|µ)

I If FX (x) is Gaussian
N∑

n=1

(xn − µ̂ML) = 0,

where
ψ(x) = −f ′X (x)/fX (x) = x → sample mean
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Basic Concepts
Maximum Likelihood Estimation

Maximum Likelihood (ML) Estimate of µ

µ̂ML = arg max
µ

N∑
n=1

log fX (xn|µ)

I If FX (x) is Laplacian
N∑

n=1

sign(xn − µ̂ML) = 0,

where
ψ(x) = −f ′X (x)/fX (x) = sign(x) → sample median

How about robustness of ML estimators?
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Basic Concepts
Breakdown Point: Practitioners Definition

Breakdown Point (BP)

movie source: archive.org

Practitioners Definition: Percentage of data that can be replaced by arbitrary
values without driving the bias of the estimator to infinity.

I very simple quantitative concept, independent of probabilistic notions
I most useful in small sample situations [Huber et al. 2009]
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Basic Concepts
BP of Some Popular Estimators of Location

Bias and Breakdown Point

µ̂mean: sample mean
µ̂trimmed: α-trimmed mean (α = 25%)
µ̂median: sample median
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Basic Concepts
Link between BP and Maximum Bias Curve

Maximum Bias Curve (MBC)
I displays the maximum possible bias for a given percentage of outliers

MBC(ε, θ) = max
{∣∣b̂θ(F , θ)

∣∣ : F ∈ Fε,θ
}

Fε,θ = {(1− ε)Fθ + εG}: ε-neighbourhood of distributions around the nominal
distribution Fθ with G being an arbitrary contamintaing distribution

I practical tool to assess the breakdown point, e.g. mean, median and M-estimator
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So why doesn’t everyone simply use the median?
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Basic Concepts
Efficiency of Some Popular Estimators

Efficiency when F is standard normal
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Median: theoretical value

Monte Carlo

Huber M  (c=1.34): theoretical value

Monte Carlo

I relative efficiency of median is low: Eff[µ̂median] = 2/π
I M-estimators: BP=0.5 and Eff[µ̂M ] = 0.95

→What are M-estimators?
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Basic Concepts
M-Estimation

M-estimate of µ [Huber 1964]

Key Idea: replace log fX (x) from µ̂ML by ρ(x)

µ̂M = arg max
µ

N∑
n=1

ρ(xn − µ)

µ̂M solves:
N∑

n=1

ψ(xn − µ̂M ) = 0,

where
ψ(x) = ρ′(x).

→ includes all MLE
→ ψ(x) bounded→ BP = 0.5
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Basic Concepts
M-Estimation: Example

Example: Huber’s Robust M-estimator - monotone ψ(x)

ρ(x) =
{

1
2 x2 |x| ≤ cHub

cHub|x| − 1
2 c2

Hub |x| > cHub
ψ(x) =

{
x |x| ≤ cHub
cHubsign(x) |x| > cHub
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(b) score function ψ

Remark 1: cHub = const. · σ̂x , or equivalently ψ( xn−µ̂M
σ̂x

) and cHub = const., where σ̂x is a
robust scale estimate.
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Remark 2: Score function of M-estimators is directly related to the influence function→
robustness properties easy to modify based on ψ!
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Basic Concepts
M-Estimation: Example

Example: Tukey’s Robust M-estimator - redescending ψ(x)

ρ(x) =


x2
2 −

x4

2c2
Tuk

+ x6

6c4
Tuk

|x| ≤ cTuk

c2
Tuk
6 |x| > cTuk

ψ(x) =

{
x − 2 x3

c2
Tuk

+ x5

c4
Tuk

|x| ≤ cTuk

0 |x| > cTuk.
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Basic Concepts
IF: Intuitive Definition

Influence Function (IF)

movie source: archive.org

I IF measures stability of the estimator against:
1. changing a tiny fraction of the data drastically (outlier)
2. changing a large fraction marginally (rounding)

Bounded and continuous IF→ stability over an entire family of distributions.
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Basic Concepts
More formal definition of IF

Influence Function (IF): Definition and Properties
When the limit exists, the asymptotic IF, is defined by

IF(z; θ̂, Fθ)= lim
ε→0

θ̂∞(G)− θ̂∞(Fθ)
ε

=
[
∂θ̂∞(G)
∂ε

]
ε=0

,

I First derivative of the functional version of an estimator θ̂ at a nominal distribution Fθ

I ε: fraction of contamination.

I θ̂∞(Fθ): asymptotic value of the estimator when the data follows the nominal
distribution Fθ

I θ̂∞(G): asymptotic value of the estimator when the data follows the Tukey-Huber
Contamination model G = (1− ε)Fθ + ε∆z

I ∆z : point-mass probability on z.
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Basic Concepts
More formal definition of IF

Influence Function (IF): Definition and Properties
When the limit exists, the asymptotic IF, is defined by

IF(z; θ̂, Fθ)= lim
ε→0

θ̂∞(G)− θ̂∞(Fθ)
ε

=
[
∂θ̂∞(G)
∂ε

]
ε=0

,

I IF is depicted with respect to z, the position of the infinitesimal contamination

I Desirable properties of the IF: boundedness and continuity

I boundedness→ small fraction of contamination or outliers only has limited
effect on the estimate

I continuity→ small changes in the data lead to small changes in the estimate

Boundedness and continuity: estimator is qualitatively robust against infinitesimal
contamination
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Basic Concepts
IF of Some Popular Estimators

Influence Function (IF) of Estimators of µ at FX (x) = N (0, 1)
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I for M-estimators IFµ̂M (z, FX (x)) ∼ ψ(z)
I of the above three, only Huber’s M-estimator is qualitatively and quantitatively robust
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Basic Concepts
M-Estimation of Location: Algorithm

Algorithm: Location M-Estimation With Previously Computed Scale

Step 1. estimate σ̂ and initial µ̂o, e.g. with

σ̂mad (x) = 1.483 ·median(|x−median(x)|)
and
µ̂o(x) = median(x)

Step 2. while
|µ̂k+1 − µ̂k |

σ̂
< ξ, do

wkn = W
(

xn−µ̂k
σ̂

)
and µ̂k+1 =

∑N
n=1 wknxn∑N

n=1 wkn

k ← k + 1

W (x) is given by

W (x) =
{

ψ(x)/x , if x 6= 0
ψ′(0), if x = 0.
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Basic Concepts
Summary: Robust Location Estimation

For the location model, e.g. Huber’s M-estimator fulfils

Aim 1: should behave “reasonably good” at the assumed model

I efficiency = 0.95 for cHub = 1.34

Aim 2: qualitative robustness

I IF bounded and continuous

Aim 3: quantitative robustness

I BP = 0.5
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Basic Concepts: Estimating the Scale
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Basic Concepts
Scale Estimation

Multiplicative Model: Random Variables With Density of Type

fX (x) =
1
σ

g
( x
σ

)
, σ > 0, e.g.

I Gaussian distribution: f = 1
σ
√

2π
e
−(x−µ)2

2σ2

I Laplace distribution: f = 1
2σ e

−|x−µ|
σ

Task: Estimate σ given i.i.d. observations xn, n = 1, ... , N
I Engineering: σ nuissance parameter (e.g. in location estimtation, regression)
I larger σ→ more spread distribution

Most commonly used estimator: sample standard deviation
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Basic Concepts
Maximum Likelihood Scale Estimation

Maximum Likelihood (ML) Estimate of σ

σ̂ML = argmax
σ

1
N

N∏
n=1

f
(xn

σ

)
taking logs and differentiating w.r.t. σ:

1
N

N∑
n=1

ρML

(xn

σ̂

)
= 1

I ρML(x) = xψ(x)

I ψ(x) = − f ′(x)
f (x)
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Basic Concepts
Maximum Likelihood Scale Estimation

Maximum Likelihood (ML) Estimate of σ

σ̂ML = argmax
σ

1
N

N∏
n=1

f
(xn

σ

)

I if F is standard Gaussian

ρML(x) = x2 → σ̂ML =

√√√√ 1
N

N∑
n=1

x2
n

→ σ̂ML : sample standard deviation
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Basic Concepts
M-Estimation of Scale

M-Estimate of σ
1
N

N∑
n=1

ρ

(
xn

σ̂M

)
= δ,

I ρ(x): as discussed in the previous section, e.g. Huber’s

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

x

ρ
(x

)

 

 

Huber c
Hub

=∞

Huber c
Hub

=1.5

Huber c
Hub

=1

I 0 < δ < ρ(∞): a positive constant
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Basic Concepts
M-Estimation of Scale

ρ(x) bounded, continuous and quadratic near the origin

→ robust and efficient estimates

σ̂M =

√√√√ 1
Nδ

N∑
n=1

W
(

xn

σ̂M

)
x2

n

I W (x) =
{
ρ(x)/x2 x 6= 0
ρ′′(0) x = 0

→ σ̂M : weighted root mean square estimate!
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Basic Concepts
M-Estimation of Scale

(Standardized) Median Absolute Deviation (MAD)

σ̂MAD(x) = 1.483median{|x−median(x)|}

I x = (x1, ... , xN )T

I 1.483 = 1/F−1(3/4)→ Fisher consistency for standard Gaussian
I frequently used M-estimator
I BP = 50 %
I IF: smallest supremum of all M-estimators→ most B-robust
I However: relative efficiency ≈ 0.367
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Basic Concepts
M-Estimation of Scale: Algorithm

Algorithm:

Step 1. start with initial σ̂o, e.g. σ̂MAD(x)

Step 2. while
σ̂k+1

σ̂
− 1 < ξ, do

wkn = W
(

xn
σ̂k

)
and

σ̂k+1 =
√

1
Nδ

∑N
n=1 wknx2

n

k ← k + 1

W (x) is given by

W (x) =
{

ψ(x)/x , if x 6= 0
ψ′(0), if x = 0.
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Basic Concepts
Illustrating Example Location and Scale Estimation

Analysing Copper Content of Wholemeal Flour

en.wikipedia.org

24 measurements (in p.p.m.)
(2.20, 2.20, 2.40, 2.40, 2.50, 2.70,

2.80, 2.90, 3.03, 3.03, 3.10, 3.37,

3.40, 3.40, 3.40, 3.50, 3.60, 3.70,

3.70, 3.70, 3.70, 3.77, 5.28, 28.95)

outlier at 28.95

I measurement error?

I heavy tailed distribution?

I decimal error (true value 2.895)?
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Basic Concepts
Illustrating Example Location and Scale Estimation

Analysing Copper Content of Wholemeal Flour

en.wikipedia.org

Location Estimates

I sample mean: 4.28
(without the outlier 3.21)

I sample median: 3.38
(without the outlier 3.37)

I M-estimate: 3.21
(without the outlier 3.16)

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Abdelhak M. Zoubir | 35 SPG



Basic Concepts
Illustrating Example Location and Scale Estimation

Analysing Copper Content of Wholemeal Flour

en.wikipedia.org

Scale Estimates

I sample standard deviation: 5.30
(without the outlier 0.69)

I normalized MAD: 0.53
(without the outlier 0.50)

I M-estimate: 0.63
(without the outlier 0.59)
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Basic Concepts: Robust Detection
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Robust Detection
Fixed Sample Size Tests

Notation
N i.i.d. random variables X1, ... , XN

Hypotheses H0 : Xn ∼ P0, H1 : Xn ∼ P1

Likelihood ratio zN =
N∏

n=1

p1(xn)
p0(xn)

Decision rule δ ∈ {0, 1}

Error probabilities
P0[δ = 1] type I
P1[δ = 0] type II
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Robust Detection
Fixed Sample Size Tests

Notation
N i.i.d. random variables X1, ... , XN

Hypotheses H0 : Xn ∼ P0, H1 : Xn ∼ P1

Likelihood ratio zN =
N∏

n=1

p1(xn)
p0(xn)

Decision rule δ ∈ {0, 1}

Error probabilities
P0[δ = 1] type I
P1[δ = 0] type II

I P0 and P1 not precisely known

I introduce an uncertainty model: P0, P1 → P0 ∈ P0, P1 ∈ P1
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Robust Detection

Minimax Fixed Sample Tests

Examples of Uncertainty Models
Outliers

p = (1− ε)pnom + εhoutl

−6 −4 −2 0 2 4 6

Density Band

p′ ≤ p ≤ p′′

−6 −4 −2 0 2 4 6

Distance Tolerance

L(Pnom, P) ≤ ε
−6 −4 −2 0 2 4 6

ε
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Robust Detection

Minimax Fixed Sample Tests

Minimax Optimality
Use optimal test between least favorable pair of distributions (Q0, Q1) ∈ P0 × P1

N∏
n=1

q1(xn)
q0(xn)

≶ λ
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Robust Detection

Minimax Fixed Sample Tests

Minimax Optimality
Use optimal test between least favorable pair of distributions (Q0, Q1) ∈ P0 × P1

N∏
n=1

q1(xn)
q0(xn)

≶ λ

The pair (Q0, Q1) is least favorable, if it jointly maximizes both error probabilities

Q0[δ = 1] ≥ P0[δ = 1] ∀P0 ∈ P0

Q1[δ = 0] ≥ P1[δ = 0] ∀P1 ∈ P1

for all (P0, P1) ∈ P0 × P1.
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Robust Detection

Minimax Fixed Sample Tests

Minimax Optimality
Use optimal test between least favorable pair of distributions (Q0, Q1) ∈ P0 × P1

N∏
n=1

q1(xn)
q0(xn)

≶ λ

The pair (Q0, Q1) is least favorable, if it jointly minimizes all f -divergences∫
f
(

q1(x)
q0(x)

)
q0(x) dx ≤

∫
f
(

p1(x)
p0(x)

)
p0(x) dx

for all (P0, P1) ∈ P0 × P1 and for all convex functions f .

Huber, P. J. and Strassen, V. (1973). Minimax Tests and the Neyman–Pearson Lemma for Capacities. Annals of Statistics 1: 251–263.
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Robust Detection

Minimax Fixed Sample Tests

Minimax Optimality
Use optimal test between least favorable pair of distributions (Q0, Q1) ∈ P0 × P1

N∏
n=1

q1(xn)
q0(xn)

≶ λ

Example: Detect shift in standard normal distribution

Log-likelihood ratio under
I nominal model
I 10% outlier rate
I density corridor

−4 −2 0 2 4
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Where We Are Today: Advanced Robust Estimation
Tasks in Engineering
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Where are we Today?
Advanced Robust Estimation Tasks in Engineering

Problems in Communication, e.g.

Direction of Arrival Estimation [Tsakalides et al.,1996],[Liu et al.,2001],
[Visuri et al.,2001],[Swami et al.,2002],[Ollila et al.,2003],
[Lim et al.,2009], [Sharif et al.,2013]

image source: www.istockphoto.com
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Where are we Today?
Advanced Robust Estimation Tasks in Engineering

Problems in Communication, e.g.

Mobile Positioning in Wireless Networks [Kumar et al.,2009],
[Guvenc et al.,2009],[Hammes et al.,2011], [Yin et al.,2013]

image source: www.istockphoto.com
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Where are we Today?
Advanced Robust Estimation Tasks in Engineering

Problems in Communication, e.g.
Multiuser Detection [Wang et al.,1999],[Zoubir et al.,2002],
[Poor et al.,2002],[Chen et al.,2005],[Pham et al.,2006],[Kumar et al.,2009]

image source: www.istockphoto.com
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Where are we Today?
Advanced Robust Estimation Tasks in Engineering

Problems in Communication, e.g.

Spectrum Sensing [J. Lundén et al.,2010],[Moghimi et al.,2011],
[Wimalajeewa et al.,2011]

image source: www.istockphoto.com
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Where are we Today?
Advanced Robust Estimation Tasks in Engineering

Other Areas of Engineering, e.g.

Biomedical [Leski,2002],[Mahadevan et al.,2004], [Bénar et al.,2007],
[Heritier et al.,2009],[Liang et al.,2009],[Muma et al.,2011]

image source: www.istockphoto.com
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Where are we Today?
Advanced Robust Estimation Tasks in Engineering

Other Areas of Engineering, e.g.

Load Forecasting [Mili et al.,2002],[Huang et al.,2003],
[Chakhchoukh et al.,2009],[Chakhchoukh,2010]

image source: www.istockphoto.com
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The Linear Regression Model
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Application 2: Localisation of a Mobile User Equipment

image source: www.istockphoto.com
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Application 2: Localisation of a Mobile User Equipment

image source: www.istockphoto.com

I localise wireless transmitter device using different base stations
I important task in many civilian and military applications
I urban scenario: Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)

propagation→ severe degradation of position estimates
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Localisation Based on Time of Arrival (TOA) Measurements:
[Gustafsson et al.,2005]

non-linear measurement equation at each base station (BS)

yn = h(θ) + vn, n = 1, ... , N

I h =
√

(x − xBS,m)2 + (x − yBS,m)2 distance from the UE to the m-th BS
I θ = (x , y )T position of the UE and m = 1, ... , M
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Localisation Based on Time of Arrival (TOA) Measurements:
[Gustafsson et al.,2005]

linearisation yields linear regression model

Y = Xθ + E

I X and E are i.i.d.,θ is of dimension p × 1
I Y(n) = yn and x′n is the nth row of the matrix X
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Localisation Based on Time of Arrival (TOA) Measurements:
[Gustafsson et al.,2005]

NLOS propagation→ outliers in TOA measurements
I possible model

fE (e) = (1− ε)fLOS(0,σ2
LOS) + εfNLOS(µNLOS ,σ2

NLOS)
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Localisation Based on Time of Arrival (TOA) Measurements:
[Gustafsson et al.,2005]
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Effect of Outliers

1. Gaussian ML estimator
N∑

n=1

(y− xθ̂)2 =
N∑

n=1

(ên)2 = min
θ

not robust against any type of outliers
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Effect of Outliers

2. M-estimators:
N∑

n=1

ρ

(
ên

σ̂E ,rob

)
= min

θ

robust against vertical outliers
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Effect of Outliers

2. M-estimators:
N∑

n=1

ψ

(
ên

σ̂E ,rob

)
xn = 0

BP=0 for outliers in xn (’bad’ leverage points)
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

3. S-estimator: [Rousseeuw et al., 1984], [Salibian-Barrera et al., 2006]
minimizes robust scale of the residuals

θ̂S = argmin
θ

σ̂E ,rob(θ)

however: combination of high efficiency and BP not possible
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

3. S-estimator: [Rousseeuw et al., 1984], [Salibian-Barrera et al., 2006]
minimizes robust scale of the residuals

θ̂S = argmin
θ

σ̂E ,rob(θ)

however: combination of high efficiency and BP not possible

4. MM-estimator: [Yohai, 1987], [Salibian-Barrera et al., 2006]
Step 1. Compute an initial consistent high BP estimate θ̂S .
Step 2. Compute the high BP M-scale of the residuals of Step 1.
Step 3. Compute an efficient M-estimate of regression, using an iterative
procedure starting at θ̂S .

highly robust and efficient: BP=0.5 and Eff=0.95
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Simulation Geolocation

I M = 10 base stations
I N = 5 measurements

available at each base
station

I ε = 0.4
I σLOS = 150m, hNLOS(v ) is

the exponential density
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MM-Estimator
I outperforms all competitors
I stable performance over all σNLOS
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Simulation Geolocation

I M = 10 base stations
I N = 5 measurements

available at each base
station

I ε = 0.4
I σLOS = 150m, hNLOS(v ) is

the exponential density
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Current Tools [Salibian-Barrera et al., 2006],[Agullo et al., 2008]
fast algorithms to compute robust and efficient estimators
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Robust Estimation Application Example
Localisation of a Mobile User Equipment

Simulation Geolocation

I M = 10 base stations
I N = 5 measurements

available at each base
station

I ε = 0.4
I σLOS = 150m, hNLOS(v ) is

the exponential density
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Further Innovations: robust methods that adapt to an unknown scenario, e.g.
U. Hammes and A. M. Zoubir, Robust MT Tracking Based on M–Estimation and Interacting Multiple Model Algorithm., IEEE Trans. Signal Process., Vol. 59, No. 7,
pp. 3398–3409, 2011.
F. Yin, C. Fritsche, F. Gustafsson and A. M. Zoubir, TOA Based Robust Wireless Geolocation and Cramer–Rao Lower Bound Analysis in Harsh LOS/NLOS
Environments., IEEE Trans. Signal Process., Vol. 61, No. 9, pp. 2243–2255, 2013.
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Current Trends and Future Directions
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Current Trends and Future Directions

Complex Valued Multichannel Data

I complex elliptically symmetric distributions
I robust M-estimation for complex valued data
I robust detection of circularity
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Current Trends and Future Directions

Robustness and Random Matrix Theory

I DOA estimation in the joint p →∞, N →∞ regime.
I Adaptive Normalized Matched Filter Detector in the joint p →∞, N →∞ regime.
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Current Trends and Future Directions

Regularized Robust Estimation

I high-dimensional data p > n containing outliers/impulsive noise
I covariance/scatter matrix estimation
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Current Trends and Future Directions

Contaminated regressor models in high dimensional data

Rousseeuw: “Recently researchers have come to realize that the outlying rows
paradigm is no longer sufficient for modern high-dimensional datasets.”

I high-dimensional regression models containing outliers in the regressors
I Current robust estimators break down in the independent contamination model (ICM)
I New robust lasso procedures are being proposed for the ICM

J. Machkour, B. Alt, M. Muma and A. M. Zoubir, The Outlier-Corrected-Data Adaptive Lasso: A new robust estimator for the independent contamination
model.,submitted to ICASSP 2017.
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Current Trends and Future Directions

Robust Bootstrap

I Robust bootstrap methods
I Robust bootstrap for big data
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Current Trends and Future Directions

Robust Estimation for Dependent Data

I Bounded Influence Propagation ARMA models
I Propagation of outliers
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Current Trends and Future Directions

Robust Norms and Compressed Sensing

I sampling process is performed in the presence of impulsive noise
I robust sampling and nonlinear reconstruction strategies for sparse signals
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Current Trends and Future Directions

Robustness in Distributed and Adaptive Systems

I Robustness in decentralized sensor networks
I Robust distributed signal and parameter estimation, detection, classification, object

labelling, dictionary learning
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Current Trends and Future Directions

Advances in Robust Detection

I Design of sequential robust detectors
I Joint detection and estimation
I Adaptation of signal models to be usable in today’s applications, e.g. radar
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Many of these exciting topics will be covered in this Summer School!

Sunday	  18.9. Monday,	  19.9. Tuesday,	  20.9. Wednesday,	  21.9. Thursday,	  22.9. Friday,	  23.9. Saturday,	  24.9.
09:00 Gini,	  Welcome 09:00

Koivunen,	  Boot.	  B.	  Data Pascal,	  Rob.	  RMT Ollila,	  Rob.Reg.	  Cov Arce,	  Rob.	  Norms	  CS
Zoubir,	  Rob.	  Basics

10:20 Coffee Coffee Coffee Coffee Coffee 10:20
10:40 10:40

Zoubir,	  Rob.	  Regres. Koivunen,	  Boot.	  B.	  Data Pascal,	  Rob.	  RMT Ollila,	  Rob.Reg.	  Cov Arce,	  Rob.	  Norms	  CS

12:00 12:00
Lunch Lunch Lunch Lunch Lunch

Special
14:00 Social	  Activity 14:00

Muma,	  Dependent Koivunen,	  Boot.	  B.	  Data Pascal,	  Rob.	  RMT Ollila,	  Rob.Reg.	  Cov Arce,	  Rob.	  Norms	  CS (optional)

15:20 Coffee	  Break Coffee	  Break Coffee	  Break Coffee	  Break Coffee	  Break 15:20
15:40 Talk	  to	  Koivunen Talk	  to	  Pascal Talk	  to	  Ollila Talk	  to	  Arce 15:40
16:10 Muma,	  Dependent 16:10

Poster	  Session	   Social	  Activity	  3 Exam
17:00 Talk	  to	  Zoubir,	  Muma Social	  Activity	  2 (optional) (optional) 17:00
17:30 (optional) 17:30
19:00 19:00

Welcome	  Dinner Social	  Activity	  1
21:00 (optional) Special	  Dinner 21:00

Chill-‐Out	  Vineyard
23:00 (optional) 23:00
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Thanks for your attention!
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Further Reading Robustness in Signal Processing I
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