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Introduction

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Michael Muma | 3 SPG



Real Data Example
Motion Artifacts in Intracranial Pressure Signal

Intracranial Pressure (ICP)
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ICP measurement
motion artifacts

photo: ESA ten hour excerpt of a typical ICP measurement

artifacts→ robust ICP forecasting→ early interventions for patients with traumatic
brain injuries
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Real Data Example
Electrocardiogram (ECG)

Electrocardiogram (ECG)
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ECG measurement

23 second excerpt of ECG from a psychological study
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Real Data Example
Electrocardiogram (ECG)

Electrocardiogram (ECG)
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ECG measurement
additive artifacts

23 second excerpt of ECG from a psychological study
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Real Data Example
Electrocardiogram (ECG)

Electrocardiogram (ECG)
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ECG cleaned

23 second excerpt of ECG from a psychological study

motion artifact cancellation→ reliable ECG analysis

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Michael Muma | 5 SPG



Real Data Example
Electrocardiogram (ECG)

Electrocardiogram (ECG)

3.5 4 4.5 5 5.5 6
−1

0

1

2

Time [s]

A
m

p
lit

u
d
e
 [
V

]

 

 

detail: artifact-free segment
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Real Data Example
Electrocardiogram (ECG)

Electrocardiogram (ECG)
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detail: artifact-contaminated segment
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Real Data Example
Electrocardiogram (ECG)

Reminder on Aims of Robust Methods
I ‘The procedure should behave “reasonably well” at the assumed model.’

I ‘The effect of an erroneous observation, even if it takes an arbitrary value,
should not have a large impact on the method.’

I ’Somewhat larger deviations from the model should not cause a
catastrophe.’
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Real Data Example
Electrocardiogram (ECG)

Intuitive Example: Nonparametric Spectral Analysis of ECG [9]

Bartlett estimator
I Split the measurement x into M parts xm of the same length
I Compute the periodogram IXX (ejω, m) for each xm

I ĈXX (ejω) =
1
M

M∑
m=1

IXX (ejω, m)

Robust Bartlett estimator
I Replace the sample mean in Bartlett’s estimator by a robust location estimate

(e.g. M-estimate or sample median)
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Real Data Example
Electrocardiogram (ECG)

Intuitive Example: Nonparametric Spectral Analysis of ECG [9]

I Similar results for clean measurements (right)
I Robust estimator maintains performace in presence of artefacts (left)

⊕ Simple and computationally cheap robust alternative

	 Can only be expected to work well, when majority of parts xm , m = 1, ... , M does not contain outliers
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Real Data Example
RR Trace

Example: Outlier Cleaning for RR Traces [57]
I important, e.g. for heart rate variability analysis, arrhythmia detection, fitness

monitoring
I can be derived, from ECG by detecting the peaks
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Real Data Example
RR Trace

Example: Outlier Cleaning for RR Traces [57]
I important, e.g. for heart rate variability analysis, arrhythmia detection, fitness

monitoring
I can be derived, from ECG by detecting the peaks

300 310 320 330 340 350 360

−2

0

2

4

6

E
C

G
 m

V

 

 

ECG

R̂-Peaks
R-Peaks

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Michael Muma | 9 SPG



Real Data Example
RR Trace

Example: Outlier Cleaning for RR Traces [57]
I important, e.g. for heart rate variability analysis, arrhythmia detection, fitness

monitoring
I can be derived, from ECG by detecting the peaks
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R̂-R̂(BIPτ )

R-R

true R-R series (black); estimated R-R series (red); outlier cleaned R-R series (green)
I missed detections and false alarms→ outliers in R-R series
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Real Data Example
RR Trace

Example: Outlier Cleaning for RR Traces [57]
I important, e.g. for heart rate variability analysis, arrhythmia detection, fitness

monitoring
I can be derived, from ECG by detecting the peaks
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R̂-R̂

complete estimated R-R series
I missed detections and false alarms→ outliers in R-R series
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Real Data Example
RR Trace

Example: Outlier Cleaning for RR Traces [57]
I important, e.g. for heart rate variability analysis, arrhythmia detection, fitness

monitoring
I can be derived, from ECG by detecting the peaks
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R̂-R̂(BIPτ )

R-R series after outlier cleaning based on robust parameter estimation
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Further Applications

I short-term load forecasting
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I econometrics
I audio restoration
I ...
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Signal and Outlier Models
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Introduction
Basic Assumptions

(Local) Stationarity
I approximately holds for some signals, e.g. local stationarity for speech
< 15− 30 ms

I holds after suitable pre-processing for many others, e.g. differentiation,
empirical mode decomposition

Most Popular Model
I As in classical signal processing for dependent data:

AutoRegressive Moving Average (ARMA)
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Autoregressive Moving Average (ARMA) Model

Autoregressive Moving Average ARMA(p,q)

yt = µ +
p∑

i=1

φi (yt−i − µ) + at −
q∑

i=1

θiat−i (1)

I yt : observations with mean value µ
I at : i.i.d. Gaussian random variables (“innovations”) with finite variance
I φ = (φ1, ... ,φp): autoregressive parameters
I θ = (θ1, ... , θq): moving average parameters
I β = (φ, θ,µ): parameter vector of ARMA
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Autoregressive Moving Average (ARMA) Model

Let

φ(B) = 1−
p∑

i=1

φiBi and θ(B) = 1−
q∑

i=1

θiBi .

then
ae

t (β) = θ−1(B)φ(B)(yt − µ),

Assume
I all roots of φ(B) and θ(B) are outside the unit circle
→ stationary and invertible models

I φ(B) and θ(B) do not have common roots
→ identifiable models
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Autoregressive Moving Average (ARMA) Model

Recursion for innovations

ae
t (β) = yt − µ−

p∑
i=1

φi (yt−i − µ) +
q∑

i=1

θiae
t−i (β), t = p + 1, p + 2, ...

I ae
t (β) = at .

ARMA Parameter Estimation

β̂ = argmin
β

f (ae
t (β))

I an(β) = (ae
1(β), ae

2(β), ... , ae
n(β)
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Autoregressive Moving Average (ARMA) Model

Robust Parameter Estimation
I estimate the ARMA parameters reliably given a finite number of (partially corrupted)

observations

Example: AR(2), φ = (0.7,−0.4), n = 200, 10 % additive outliers
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Parameter Estimate

â1
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left: classical estimator, right: robust estimator
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Autoregressive Moving Average (ARMA) Model

Robust Model Order Selection
I estimate p and q: select the candidate model that minimizes

IC(p, q) = robust data fit + model complexity penalty
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Autoregressive Moving Average (ARMA) Model

Robust Model Order Selection
I estimate p and q: select the candidate model that minimizes

IC(p, q) = robust data fit + model complexity penalty

Example: AR(2), φ = (0.7,−0.4), n = 200, 10 % additive outliers
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Autoregressive Moving Average (ARMA) Model

Robust Model Order Selection
I estimate p and q: select the candidate model that minimizes

IC(p, q) = robust data fit + model complexity penalty

Example: AR(2), φ = (0.7,−0.4), n = 200, 10 % additive outliers
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Autoregressive Moving Average (ARMA) Model

Robust Model Order Selection
I estimate p and q: select the candidate model that minimizes

IC(p, q) = robust data fit︸ ︷︷ ︸
f (ae

t (β̂(p,q)))

+ model complexity penalty︸ ︷︷ ︸
g(p,q,n)

Example: AR(2), φ = (0.7,−0.4), n = 200, 10 % additive outliers
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Outlier Models
Additive Outliers

Additive Outliers (AO)
yεt = xt + ξεt wt ,

I yεt : contaminated observations
I xt : core process which follows Eq. (1)
I wt : contaminating process, independent of xt

I ξεt : stationary random process

ξεt =

{
1 with probability ε

0 with probability (1− ε).
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Outlier Models
Replacement Outliers

Replacement Outliers (RO)

yεt = (1− ξεt )xt + ξεt wt ,

I yεt : contaminated observations
I xt : core process which follows Eq. (1)
I wt : contaminating process, independent of xt

I ξεt : stationary random process

ξεt =

{
1 with probability ε

0 with probability (1− ε).
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Outlier Models
Innovation Outliers

Innovation Outliers (IO)
at in Eq. (1) is replaced by

aεt = at + ξεt wt ,

or
aεt = (1− ξεt )at + ξεt wt ,

I aεt : contaminated innovations
I wt : contaminating process, independent of at

I ξεt : stationary random process

ξεt =

{
1 with probability ε

0 with probability (1− ε).
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Outlier Models
Patchy and Isolated Outliers

Outliers may also differ depending on temporal structure:

Isolated Outliers
I ξεt takes the value 1, such that at least one non-outlying observation is between two

outliers (e.g. ξεt follows an independent Bernoulli distribution)

Patchy Outliers
I ξεt , i = 1, ... , n takes the value 1 for npatch ≤ n/2 subsequent samples

Further Outlier Models
I level shifts
I change of variance
I . . .
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Propagation of Outliers
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Propagation of Outliers
Example: Outliers in an AR(1) process

Example: AR(1) Process:
I xt = 0.5xt−1 + at , t = 1, ... , 250

at are zero mean i.i.d. Gaussian random variables with σa = 1
I observations given by y100 = x100 + 10, y150 = x150 + 10, yt = xt , otherwise
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→ two additive outliers

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Michael Muma | 21 SPG



Propagation of Outliers
Example: Outliers in an AR(1) process

Representation of the AR(1) With Two AOs as Regression:

→ four outliers in regression representation: two vertical outliers and two ’bad’ leverage
points

→ for p > 1 or ARMA, even highly robust i.i.d. regression estimators break down
(reasons shown later)
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Propagation of Outliers
Example: Outliers in an AR(1) process

Now Consider Two Innovations Outliers:
a100 = a100 + 10, a150 = a150 + 10 and the corresponding regression

→ two vertical outliers, but several ’good’ leverage points, which lie on the tangent given
by xn = 0.5xn−1.

→ even classical estimators give good results, since the ’good leverage points’
compensate for the vertical outliers
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Propagation of Outliers
Reconstructing the Innovation Series

ARMA Parameter Estimation

β̂ = argmin
β

f (an(β))

I an(β) = (ae
1(β), ae

2(β), ... , ae
n(β)

I ae
t (β) = θ−1(B)φ(B)(yt − µ)

= yt − µ−
∑p

i=1 φi (yt−i − µ) +
∑q

i=1 θi ae
t−i (β)
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Propagation of Outliers
ARMA(2,1) with Additive Outliers

Example: ARMA(2,1) - Reconstructing the Innovations an(β)
I φ = (−0.39,−0.3), θ = 0.9, µ = 0, σ = 1
I observations follow ARMA
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ARMA innovations estimates
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Propagation of Outliers
ARMA(2,1) with Additive Outliers

Example: ARMA(2,1) - Reconstructing the Innovations an(β)
I φ = (−0.39,−0.3), θ = 0.9, µ = 0, σ = 1
I observations follow ARMA with additive outliers
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ARMA innovations estimates

→ propagation of outliers onto multiple innovations estimates must be prevented!
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Propagation of Outliers
How to prevent it?

Two main approaches
1. filtered robust estimators

I known since the 1970s
I provide good results when all parameters are chosen correctly
I implementation not straight forward
I not tractable in terms of statistical analysis (consistency, efficiency, influence

function)

2. bounded influence propagation model
I proposed in 2009
I auxiliary model that includes ARMA model as a special case
I easy to implement
I tractable in terms of statistical analysis (consistency, efficiency, influence

function)
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Bounded Influence Propagation Model

Bounded Innovation Propagation Autoregressive Moving Average
(BIP-ARMA) Model, [8]

yt = at + µ +
p∑

i=1

φi (yt−i − µ)−
r∑

i=1

(
φiat−i + (θi − φi )ση

(at−i

σ

))
(2)

I auxiliary model to prevent propagation of outliers
I η(x): odd, bounded and continuous function (e.g., Huber or Tukey)

ARMA models: η(x) = x .
I σ: scale of at

I r = max(p, q), if r > p, ap+1 = ... = ar = 0, while if r > q, bq+1 = ... = br = 0.
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Bounded Influence Propagation Model

Recursion for BIP ARMA Innovations

ab
t (β,σ) = yt −µ−

p∑
i=1

φi (yt−i −µ) +
r∑

i=1

(
φiab

t−i (β,σ) + (θi −φi )ση
(

ab
t−i (β,σ)
σ

))
I recursion depends on innovations scale σ
I → How to determine σ?
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Bounded Influence Propagation Model

Recursion for BIP ARMA Innovations

Eq. (1) can be written as MA(∞)

yt = µ− at +
∞∑
i=1

λiση
(at−i

σ

)
,

I λi (β): coefficients of φ−1(B)θ(B).

Now

σ2(β) =
σ2

y

1 + κ2
∑∞

i=1 λ
2
i (β)

,

I σy : standard deviation of yt

I κ2 = Var
[
η
( at
σ

)]
= E

[(
η
( at
σ

)
− E

[
η
( at
σ

)])2
]
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Bounded Influence Propagation Model

Example of η(x)

I Tukey’s Biweight

η(x) =

{
x − 2 x3

c2
Tuk

+ x5

c4
Tuk

|x | ≤ cTuk

0 |x | > cTuk.

I cTuk =∞→ ARMA model
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Bounded Influence Propagation Model

Effect of η(x)
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Robust Filters

State-Space Representation of AR(p) Process
I state equation:

xt = Φxt−1 + at

I non–observable p-dimensional state vector: xt = [xt , xt−1, · · · , xt−p+1]T

I innovations: at = [at , 0, · · · , 0]T

I state transition matrix: Φ =


φ1 · · · φp−1 φp
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


I measurement equation:

yt = xt + wt

I xt and wt are independently distributed
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Robust Methods for Dependent Data
Robust Filtering of an AR(p) Process

Approximate Conditional Mean (ACM) Filter, [51, 22]
computes robustly filtered estimate

x̂t|t = Φx̂t−1|t−1 +
Σ̂1,t

σ̂t
ψ

(
yt − ŷt|t−1

σ̂t

)
which is an approximation of E[xt |y1, y2, ... , yt ]

I ψ(·) is an odd, bounded and continuous score function [7]
I Σ̂1,t is the first column of Σ̂t (prediction error covariance matrix), which is computed

recursively. σ̂2
t is the first element of Σ̂1,t

I ŷt|t−1 is the robust one step ahead predictor of yt based on {y1, ... , yt−1}

ŷt|t−1 = (Φx̂t−1|t−1)1

I For a detailed description of the algorithm, see e.g. [18]
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Robust Methods for Dependent Data
Robust Filtering of an AR(p) Process

Example: Filtered Residuals for AR(2)
I φT = (φ1 φ2) = (0.8 0.3); every 10th sample AO from N (0, (10σ)2)
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blue: innovations process; red: ARMA innovations estimate; black: robustly filtered residuals

I filtered residual at time t : af
t (β,σt ) = yt − φTx̂t−1|t−1

I ae
t (β0) = yt − φT(yt−1 yt−2)

→ use filtered residuals for robust parameter estimation
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Robust ARMA Parameter Estimation
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Robust ARMA Parameter Estimation

Overview:
I revision of some popular robust ARMA estimators
I algorithms to compute the estimates
I real data applications
I some robustness theory
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Cleaned Maximum Likelihood Estimators

3σ cleaned ML-estimator (ML 3σ)

Simple diagnostic robust method that is frequently used among engineering
practitioners.

1. 3σ rejection, i.e. observations beyond three standard deviations are flagged
as outliers.

2. ML estimation with missing data

I Justified since for xt ∼ N (µ,σ2), Pr(|xt − µ| < 3σ) = 99, 73.
I Robust estimates of the mean µ and the standard deviation σ should be used to avoid

the masking effect
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Median-of-Ratios-Estimator (MRE)

Median-of-Ratios-Estimator (MRE), [10, 12]
An ARMA(p,q) model is estimated by the MRE as follows:

1. Fit a high order AR(p0) using the median of yt/yt−i , where t = i + 1, i + 2, ... , n for
i = 1, 2, ... , p0, to estimate the autocorrelation at lag i. The order p0 > p is obtained by
a robust order selection criterion.

2. Discard the outliers by filtering the signal using a robust filter-cleaner with the
estimated parameters of the high order AR(p0) and apply a classical estimation
method of ARMA models that handles missing data.

The method offers good performance in practice and is easy to implement.
However, its breakdown point is limited to 0.25.
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M-estimator

An M-estimate is Obtained by Solving

β̂M = argmin
β

n∑
t=p+1

ρ

(
ae

t (β)
σ̂M

n (an(β))

)
(1)

I ae
t (β) = yt − µ−

∑p
i=1 φi (yt−i − µ) +

∑q
i=1 θi ae

t−i (β)
I ρ(x) is a real function with: ρ(0) = 0, ρ(x) = ρ(−x), and ρ(x) is continuous,

non-constant and non-decreasing in |x |.
I σ̂M

n (an(β)) is an M-estimate of the innovations scale

1
n − p

n∑
t=p+1

ρ

(
at (β)

σ̂M
n (an(β))

)
= b. (2)

I supρ(x) > b
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M-estimator

equivalently, with ψ(x) = dρ(x)
dx , β̂M is found by solving

n∑
t=p+1

yt−1ψ

(
ae

t (β)
σ̂M

n (an(β))

)
= 0

I yT
t−1 = (1, yt , yt−1, ... , yt−p+1)

I ψ(x) is bounded and continuous
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S-estimator

S-estimator

β̂S = argmin
β

σ̂(ae
n(β)) (1)

I S-estimators provide the value of β that minimizes an M-scale estimate as defined on
the previous slide.

I finding β̂S requires solving a nonconvex problem for which the complexity increases
with p, q

I iterative algorithms require a robust starting point
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MM-estimator

An MM-estimate is Obtained by Solving

β̂MM = argmin
β

n∑
t=p+1

ρ2

(
ae

t (β)

σ̂(ae
n(β̂S))

)
(2)

I ae
t (β) = yt − µ−

∑p
i=1 φi (yt−i − µ) +

∑q
i=1 θi ae

t−i (β)
I σ̂(ae

n(β̂S)): robust M-scale estimate of ae
n(β̂S) = (ae

1(β̂S), ae
2(β̂S), ... , ae

n(β̂S)

→ MM estimator is a two-step estimator that requires computing an S-estimator based
on ρ1 followed by an M-estimator with a different ρ function
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τ -estimator

τ -estimator

β̂τ = argmin
β

σ̂τn (an(β)) (3)

I τ -estimators provide the value of β that minimizes a robust and efficient τ -scale
estimate

σ̂τn (an(β)) = σ̂M
n (an(β))

√√√√ 1
n − p

n∑
t=p+1

ρ2

(
ai (β)

σ̂M
n (an(β))

)
I finding σ̂τn (an(β)) requires solving a nonconvex problem for which the complexity

increases with p, q
I iterative algorithms require a robust starting point
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τ -estimator

τ -estimator
I M-estimate of the innovations scale

1
n − p

n∑
t=p+1

ρ1

(
at (β)

σ̂M
n (an(β))

)
= b. (3)

I an(β) = (ap+1(β), ... , an(β))
I ρ1(x) is a real function with: ρ1(0) = 0, ρ1(x) = ρ1(−x), and ρ1(x) is continuous,

non-constant and non-decreasing in |x |.
I ψ1(x) = dρ1(x)

dx is bounded and continuous.
I supρ1(x) > b
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τ -estimator

τ -estimator
I asymptotically equivalent to a weighted sum of two M-estimates with data dependent

weight

ψ-functions
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τ -estimator

τ -estimator
I asymptotically equivalent to a weighted sum of two M-estimates with data dependent

weight

ψ-functions for 0 ≤ ε ≤ 0.5
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Robustifying Popular Robust Estimators

Due to Propagation of Outliers, None of These Estimators Are Robust:
I M-estimator
I S-estimator
I MM-estimator
I τ -estimator

However, they become robust as soon as the innovations ae
t (β,σ) based on which the

estimation is performed are replaced by

I ab
t (β,σ) from the BIP-model, or

I af
t (β,σt ) obtained from robust filters.

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Michael Muma | 40 SPG



Example
Bounded Innovation Propagation τ -Estimator

Definition of the τ -Estimator Under the BIP-ARMA Model, [57]
I τ -estimate of β = (φ,θ,µ) under the BIP-ARMA model

β̂
b
τ = arg min

β∈B
σ̂τn (ab

n(β, σ̂(β))), (3)

I τ -estimate of the scale of ab
n(β, σ̂(β)), which can be computed recursively

from (2)

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Michael Muma | 41 SPG



Example
Bounded Innovation Propagation τ -Estimator

Final BIP τ -estimator, [57]

β̂
∗
τ =

{
β̂τ if σ̂τn (an(β̂τ )) < σ̂τn (ab

n(β̂
b
τ , σ̂(β̂

b
τ )))

β̂
b
τ else.

(4)

I in [57], it is shown that for (outlier-free) ARMA models, it asymptotically holds that
σ̂τn (an(β̂τ )) < σ̂τn (ab

n(β̂
b
τ , σ̂(β̂

b
τ ))).

→ when the data follows an (outlier-free) ARMA, the ARMA-based estimate is used.
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Algorithm for AR(p)
Bounded Influence Propagation τ

To compute β̂
∗
τ for the AR(p) model, [57] proposes a robust Durbin-Levinson type

algorithm, where the parameters are recursively found for m = 1, ... , p.

For AR(1), proceed as follows
I define a grid ζ0 = −0.99 : ∆ζ0 : 0.99
I compute AR(1) innovations from ARMA and BIP-ARMA model, i.e.

an(ζ0), ab
n(ζ0, σ̂(ζ0))

I compute corresponding τ -scale estimates σ̂τ (an(ζ0)), and σ̂τ (ab
n(ζ0, σ̂(ζ0)))

I Estimate for AR(1) is given by φ̂1 = argmin
ζ

{
σ̂τ (an(ζ)), σ̂τ (ab

n(ζ, σ̂(ζ)))
}

.
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Algorithm for AR(p)
Bounded Influence Propagation τ
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φ̂1 =-0.487
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b
n(ζ , σ̂(ζ)))

σ̂τ
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φ̂1 =
-0.485

Example of finding −1 < ζ < 1 which minimizes σ̂τn (an(ζ))and σ̂τn (ab
n(ζ, σ̂(ζ))) for an AR(1)

process with φ1 = −0.5 and σ = 1. (left) yt = xt clean data example; (right) 10 % equally
spaced AOs of amplitude 10.
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Algorithm for AR(p)
Bounded Influence Propagation τ

For a general AR(p) process, the parameters are found recursively for m = 2, ... , p by
minimizing

φ̂m,m = argmin
ζ

{
σ̂τ (an(ζ)), σ̂τ (ab

n(ζ, σ̂(ζ)))
}

(5)

at each order m in the same manner described for the AR(1), with the help of the
Durbin-Levinson recursion:

φ̂m,m =

{
ζ if i = m

φ̂m−1,i − ζφ̂m−1,m−i if 1 ≤ i ≤ m − 1
(6)
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Algorithm for ARMA(p, q)
Bounded Influence Propagation τ

ARMA parameter estimation is more challenging than AR
I nonconvex problems, i.e. minimizing τ -scale under the ARMA and BIP ARMA must

be solved
I most important question: how to robustly find a starting point
I grid search not feasible for larger values of p, q

One possibility presented in [57] is described in the sequel.
First, starting from the BIP model, the robust one step prediction of yt can be computed
recursively for t ≥ p + 1 via

ŷt = µ +
p∑

i=1

φi

(
yt−i − µab

t (β̂, σ̂) + σ̂η

(
ab

t−i (β̂, σ̂)
σ̂

))
−

q∑
i=1

θi σ̂η

(
ab

t−i (β̂, σ̂)
σ̂

)
. (7)
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

With the BIP model, we obtain outlier-cleaned observations for t ≥ p + 1 by computing

y∗t = yt − ab
t (β̂, σ̂) + σ̂η

(
ab

t (β̂, σ̂)
σ̂

)
. (8)

Robust Starting Point Procedure

I apply an AR(p) approximation to (8)

I p must be chosen sufficiently large to well approximate the ARMA

I compute estimates via Durbin-Levinson algorithm.

This produces outlier-cleaned observations, for which we can use any classical ARMA
parameter estimator, e.g. [50] to obtain a robust starting point for the nonlinear LS
algorithm that minimizes the τ -scales under the ARMA and BIP ARMA models.
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Meausures of Robustness
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Influence Function

Dependent Data Influence Function [47]
Directional derivative at F (x), i.e.

IF({F (x , ξε, w)}; β̂∞) = lim
↓ε

(β̂∞(F (yε))− β̂∞(F (x))) =
∂

∂ε
β̂∞(F (yε))|ε=0,

provided that the limit exists.
I F (x), F (w), F (ξε) and F (yε) are the cdfs of xt , wt , ξε and yεt , respectively.
I F (x , ξε, w) is the joint distribution of xt , wt , ξε.

→ for dependent data, IF changes depending on the outlier model (i.i.d.: contamination
process represented by a Dirac distribution)

I two definitions exist that are mathematically related
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Influence Function

Dependent Data Influence Function [47]
Defined for functionals which may be computed as a solution to the estimating
equation ∫

ψ̃(yt , β̂)dF (yt ) = 0.

I yt : observations
I F (yt ): distribution of the observations
I ψ̃: function of the observations and the estimator
I class is quite large and contains both classical and robust parameter estimators, e.g.

the M-estimators, the generalized M-estimators and estimators based on residual
autocovariances (RA-estimators)

I However, computation of IF has only been performed for AR(1) and MA(1) models.
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Influence Function
Example

IF of τ -Estimator for AR(1) With AO [57]

I Let yεt follow the AO model with xt satisfying and AR with p = 1 and µ = 0.
I Further, let the ξεt be an independently distributed 0-1 sequence that is

independent of xt and wt .

Then, under the assumptions given in [57]

IF(F (w), β̂τ ,φ) =
(1− φ2

1)1/2

E0
E
[
(x0 + w0)(1− φ2

1)1/2ψτ (a1 − φ1w0)
]

(9)

I ψτ (x) = Wn(β)ψ1

(
at (β)

σ̂M
n (an (β))

)
+ ψ2

(
at (β)

σ̂M
n (an (β))

)
, Wn(β) is derived in [57]

I E0 = E
[
ν2 ∂(ψτ (x))

∂x

∣∣
x=u

]
6= 0,

I ν and u: independent standard normal random variables.
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Influence Function
Example

IF of τ -Estimator for AR(1) With AO [Muma 2016]
For P(wt = cw ) = 1, where cw is a constant, the IF has the appealing heuristic interpretation
of displaying the influence of a contamination value cw on the estimator, similarly to
Hampel’s definition [48] for iid data.

Example: IF for AR(1)
AR(1) with φ = −0.5 for independent AOs of magnitude cw

ρ2(x) =


0.5x2 if |x | ≤ 2
0.002x8 − 0.052x6 + 0.432x4 − 0.972x2 + 1.792 if 2 < |x | ≤ 3
3.25 |x | > 3,

ρ1(x) = ρ2(x/c1), with c1 = 0.4050 and η(x) = dρ2(x)/dx .
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Influence Function
Example

IF of τ -Estimator for AR(1) With AO [Muma 2016]
For P(wt = cw ) = 1, where cw is a constant, the IF has the appealing heuristic interpretation
of displaying the influence of a contamination value cw on the estimator, similarly to
Hampel’s definition [48] for iid data.

Example: IF for AR(1)
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w
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φ
)

 

 

IF(Fw, β̂τ , φ)

IF(Fw, β̂LS, φ)

GES

IFs of τ -estimator and least-squares (LS) estimator. GES is the gross-error-sensitivity.

19.09.2016 | Joint IEEE SPS and EURASIP Summer School on Robust Signal Processing (RoSip2016) | Michael Muma | 52 SPG



Maximum Bias Curve
Example

In Practice: MBC Usually Approximated Via Monte Carlo Simulations
[7, 10, 12]

MBC(ε) = sup
cw

∣∣β̂n(ε, cw )− β
∣∣

I The approximation is done by choosing for MBC(ε) the worst-case estimate of β over
all Monte Carlo runs for a given contamination probability ε.

I cw is a deterministic value that is varied on a grid such that for each value of cw , the
distribution of wt (see (17)) is given by Pr(wt = −cw ) = Pr(wt = cw ) = 0.5.
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Maximum Bias Curve
Example

More General Definition: Quantile Bias Curve (QBC)

QBCα(ε) = Qα

{∣∣β̂n(ε, cw )− β
∣∣} . (10)

I states that α percent of the sorted data is to the left of Qα.
I E.g. QBC75(ε) represents the MBC obtained in 75 % of the Monte Carlo runs for

varying cw and fixed ε. QBC50(ε) corresponds to the Median BC(ε) and QBC100(ε) is
the MBC(ε).
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Maximum Bias Curve
Example: MBC analysis for BIP τ - estimator [57]

Maximum Bias For a Given Pair of (cw , ε) for BIP τ - estimator

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

ε

c
w

 

 

0.1

0.2

0.3

0.4

0.5

I φ = 0.5
I asymptotic value was approximated using n = 10 000
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Maximum Bias Curve
Example: MBC analysis for BIP τ - estimator [57]

QBC Obtained Assuming Worst Possible cw For a Fixed ε
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I φ = 0.5
I asymptotic value was approximated using n = 10 000
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Breakdown Point

Breakdown Point for Dependent Data
I extending the notion from iid to dependent data not straight forward
I in dependent data models, e.g. ARMA, parameter space is bounded
I effect of outliers is more complicated than for location, scale or regression models
I BP will depend on type of contamination
I bias will depend on the signal model and the contamination

General definition by Genton and Lucas 2003 [25]

I breakdown occurs for some contamination rate ε0, for which further increasing the
value of ε does not increase the range of values taken on by the estimate over the
contamination neighborhood.

I Loosely speaking: estimator is “stuck” at some value.
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Real Data Example
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

Intracranial Pressure (ICP)
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ICP measurement

four hour excerpt of an ICP measurement

artifacts and nonstationary signal
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

Intracranial Pressure (ICP)
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.
excerpt of ICP signal intrinsic mode functions and residual

nonstationary→ empirical mode decomposition→ intrinsic mode functions (IMF)
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

Intracranial Pressure (ICP)
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IMF
1

first intrinsic mode function (IMF)

I ARMA BIP-τ parameter estimation and model order selection→ ARMA(2,1)
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

Intracranial Pressure (ICP)
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1
 cleaned

first intrinsic mode function (IMF)

I ARMA BIP-τ artifact removal y∗t = yt − ab
t (β̂, σ̂) + σ̂η

(
ab

t (β̂,σ̂)
σ̂

)
p̂ = 2, q̂ = 1, φ̂ = (0.1533, 0.0671)T , θ = −0.5283
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

Intracranial Pressure (ICP)
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I ARMA BIP-τ artifact removal y∗t = yt − ab
t (β̂, σ̂) + σ̂η

(
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σ̂

)
p̂ = 2, q̂ = 1, φ̂ = (0.1533, 0.0671)T , θ = −0.5283
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

Intracranial Pressure (ICP)
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ICP cleaned

four hour excerpt of an ICP measurement

I ARMA BIP-τ artifact removal for all IMFs→ back transform
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Real Data Example
Bounded Influence Propagation τ Artifact Cleaning

Intracranial Pressure (ICP)
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ICP measured

ICP cleaned

four hour excerpt of an ICP measurement
I ARMA BIP-τ artifact removal for all IMFs→ back transform

M. Muma, A.M. Zoubir, Robust ARMA Parameter Estimation by Bounded Innovation τ–estimation., submitted to IEEE Trans. Signal Proc. 2016.
M. Muma, Robust Model Selection for ARMA models based on the bounded innovation τ–estimator., IEEE SSP’14, pp. 428–431, 2014.
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Open Areas and Future Trends
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Isaac Newton “What we know is a drop, what we don’t know is an ocean.”
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Open Areas and Future Trends
I defining robustness for dependent data still not complete
I measuring robustness in higher order models
I sparsity and dependent data
I computing estimates in reasonable time
I multivariate dependent data
I characterizing (directional) coherence robustly
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Thanks for your attention!
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