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Ongoing research topics

I Array signal processing: multiantenna comms
I Wireless communications: flexible spectrum use, wireless

localization
I Statistical inference and optimization for smart grids,

cyber-physical systems.
I Emerging radar technologies: distributed (MIMO) radar

systems, agile/cognitive radars, co-existence of radar and
wireless comms systems

I Statistical signal processing theory and methods.
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Large Scale Data Analysis

I We live in an era of data deluge
I The lack of scalability of the conventional signal processing

(SP) and machine learning techniques and the complexity
of data form a bottleneck in the search of relevant
information.

I Data may be so BIG that it is not possible to store and
process all the data in the same unit.

I We leverage the rich field of statistical signal processing to
extract relevant infomation from high-volume and
high-dimensional data
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Data Analysis problem at hand

I Let X = (x1 · · · xn) ∈ Rd×n be a large volume and high
dimensional data set that can only be processed and
stored via parallel and distributed architectures.

I Let θ̂n be an estimator of a parameter of interest θ ∈ Rd

based on the observed big data X.
I Statistical inference and analysis of such large scale data

sets is crucial in order to quantify statistical correctness of
parameter estimates θ̂n (e.g., via Confidence Intervals)
and testing hypotheses.

The Problem: Performing statistical inference on massive data
sets is not computationally feasible using the conventional
statistical inference methodology such as bootstrap.
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Data Analysis problem at hand

I Confidence intervals may be more useful information than
point estimate for Big Data.

I We develop scalable, robust and computationally efficient
bootstrap technique for computing confidence intervals for
big data.
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CONTRIBUTION
A new bootstrap method is proposed. It facilitates bootstrap
analysis of very large scale data. It is suited for estimators that
can be expressed as a solution to fixed-point equations (e.g.
M-estimator, MM-estimator, S-estimator, FastICA estimator).

We proof statistical convergence and quantitative
robustness

The proposed method is:
1. Scalable to very large volume and high-dimensional data

sets (Big Data).
2. Compatible with distributed data storage systems and

distributed and parallel processing architectures.
3. Fast to compute as the fixed-point estimating equations do

not need to be (re)solved for each bootstrap sample.
4. Statistically highly robust against outliers.
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OUTLINE
OVERVIEW OF BASIC IDEAS

The Conventional Bootstrap
The m out of n Bootstrap
The Bag of Little Bootstraps (BLB)
The Fast and Robust Bootstrap (FRB)
Simple example formulation for M-estimator of linear
regression

FAST AND ROBUST BOOTSTRAP FOR BIG DATA (BLFRB)
BLFRB Formulation for MM-ESTIMATOR OF LINEAR
REGRESSION

STATISTICAL PROPERTIES

NUMERICAL EXAMPLES

CONCLUSION



Bootstrap principles

• bootstrapping can refer to any test or metric that relies on
random sampling from observed data with replacement.
– resampling the observed data and performing inference on

resampled replicas of the original dataset.

• Bootstrapping allows assigning quantitative measures of
accuracy such as bias, variance, confidence intervals,
prediction error to sample estimates

• properties of an estimator characterized by measuring those
properties when sampling from an approximating distribution

• Typical choice for an approximating distribution is the
empirical distribution function of the observed data.



Bootstrap principles

• If the data are i.i.d. approximation may be done by
constructing a number of resamples with replacement of
observed that are of equal size to the observed dataset.

• It may also be used for hypothesis testing. Statistical
inference may be performed without assuming an
explicit parametric model or when assumptions do not
necessarily hold, or where parametric inference is
impossible or very tedious.

• bootstrap works by treating inference of the true
probability distribution F, given the original data, as
being analogous to inference of the empirical distribution
of Fe, given the resampled data.



Example: variance estimation (A. Zoubir)



When to use bootstrap?

• When the underlying theoretical distribution of an
estimator or test of interest is complicated or unknown.
– the bootstrap procedure does not assume distribution and

provides an indirect method to assess the properties of the
distribution underlying the observed data and the parameters of
interest.

• When there are too few data for conventional statistical
inference

• When calculating the sensitivity (power) of a binary
hypothesis test and a small pilot dataset is available



Bootstrap – pros and cons

• Advantages of bootstrap:
– Simplicity, provides straightforward way to derive estimates of

standard errors and confidence intervals even for complicated
estimators of parameters of the distribution, such as percentile
points and correlation coefficients.

• Bootstrap allows for controlling and checking the
stability of the results.

• In many problems it is impossible to know the true
confidence interval, bootstrap is asymptotically more
accurate than the intervals obtained using sample
variance and relying on assumption of normality



Bootstrap – pros and cons

• bootstrapping is often asymptotically consistent but it
does not provide general finite-sample guarantees.

• Key assumptions such as independence of samples are
implicitly made but not explicitly stated when
undertaking the bootstrap analysis. In typical analytical
derivations these would be more formally stated .



Excellent reference book
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The Conventional Bootstrap

I The Bootstrap method (Efron) combines statistics and
high-speed computational techniques, storage and
resampling in order to find properties of estimators.

I Computational capabilities and resampling are used to
compensate for the lack of knowledge on statistical
properties or underlying distribution models.
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The Conventional Bootstrap
The bootstrap method [Efron, 1979] is a consistent and reliable
method of constructing confidence intervals for statistical
estimates (e.g., by bootstrap percentile method, BCA method,
etc,).

1. Generate r bootstrap samples X∗ of size n by resampling
with replacement from the original data set X.

2. Compute θ̂
∗
n on each bootstrap sample X∗.

3. Use the population of bootstrap replications θ̂
∗
n to estimate

the desired confidence intervals ξ.
X∗(1) = (x∗(1)

1 · · · x∗(1)
n )

X∗(2) = (x∗(2)
1 · · · x∗(2)

n )

...

X∗(B) = (x∗(B)
1 · · · x∗(B)

n )

θ̂
∗(1)
n

θ̂
∗(2)
n

...

θ̂
∗(B)
n

ξ(θ̂
∗(1)
n , θ̂

∗(2)
n , · · · , θ̂∗(B)

n )X = (x1 · · · xn)



Bootstrap
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Remarks on computation

I The simplest method of finding confidence intervals for an
unknown parameter is to take α/2 and 1− α/2 quantiles of
the bootstrap distribution of the estimator θ̂n as endpoints
of the 100(1− α)% confidence interval

I Simple example: If we have 100 bootstrap estimates of θ,
we will rank order them and the 90% confidence interval is
found by choosing the 5th smallest and 95th value as the
end points of the interval.

I In other words, trim α/2% of the smallest and largest
values off to find the confidence interval.
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Remarks on computation

I Expected number of distinct datapoints in each resample is
about 0.632n

I Computational complexity typically scales with the number
of distinct data points

I For a dataset of 1 TB, resample size would be 632 GB
I Parameter estimation and quality assesment is done for

each resample
I Methods for reducing the number of resamples (Efron) and

subsampling methods (m out of n bootstrap) have been
proposed (Bickel)
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The Conventional Bootstrap

I Advantages: Accurate for a wide range of estimators θ̂n

I Automatic, because does not require any manipulation of
the estimation equations

I Disadvantages: Computationally very costly since the
estimator θ̂n is recomputed for each bootstrap sample

I Not robust in the face of outliers (highly deviating data)
I Not scalable, not suitable for distributed storage and

(parallel) computing architectures.
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The Conventional Bootstrap

Two main problems of using the bootstrap in analyzing large
scale multivariate data sets:

1. The size of each bootstrap sample is the same as the
original big data set (i.e., due to resampling with
replacement, about 63% of data points appear at least
once in each bootstrap sample).

2. Computation of the value of the estimator for each massive
bootstrapped data set is not feasible using single storage
and processing units.
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The m out of n Bootstrap

The m out of n bootstrap [Bickel, et al., 1997] aims at reducing
the computational cost by utilizing bootstrap samples of
significantly smaller size than the original data set (m < n). The
method is not suited for analysis of large multivariate data sets
since:

I The output is sensitive to the size of the subsamples m.
I The knowledge of convergence rate of the estimator is

needed in order to re-scale the output to the right size.
I The computational gains of the method (i.e., achieved by

using smaller bootstrap samples) are reduced by the
tedious analytical derivations needed for each inference
problem at hand.
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The Bag of Little Bootstraps (BLB)

The bag of little bootstraps (BLB) is a newly proposed bootstrap
scheme [Kleiner, Jordan, et al., 2014] aiming to make the naive
bootstrap method suitable for analysis of Big Data sets. In this
method:

I Disjoint subsamples of significantly smaller size
b = {bnγc |γ ∈ [0.6,0.9]} are drawn from the original Big
Data set. Subsamples may be kept in/sent to in distributed
storage and processing units for parallel computations.

I In each unit, bootstrap samples are constructed by
assigning a random weight vector n∗ = (n∗1, . . . ,n

∗
b) from

Multinomial(n, (1/b)1b) to the distinct data points of the
subsample, where

∑b
i=1 n∗i = n.
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The BLB procedure
1. Draw s subsamples X̌ = (x̌1 · · · x̌b) of smaller size

b = {bnγc |γ ∈ [0.6,0.9]} by randomly sampling without
replacement from X.

for each subsample X̌
2. Generate r bootstrap samples X∗ = (X̌; n∗) by assigning a

random weight vector n∗ = (n∗1, . . . ,n
∗
b) from

Multinomial(n, (1/b)1b) to data points of X̌.
3. Compute the estimator θ̂

∗
n based on each X∗.

4. Use the population of r bootstrap replications θ̂
∗
n to

estimate the bootstrap confidence interval ξ̂
∗

(e.g., by
bootstrap percentile method).

end
5. Average the computed values of ξ̂

∗
over the subsamples,

i.e., ξ̂
∗

= 1
s
∑s

k=1 ξ̂
∗(k)

.
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The Bag of Little Bootstraps (BLB)

I X̌(k), k = 1, . . . , s denotes the disjoint subsamples
I X∗(kj), j = 1, . . . , r corresponds to the j th BLB sample

generated based on the subsample k .
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The Bag of Little Bootstraps (Remarks)
I The distinct data of the subsamples in Step 2 allows the

original Big data set to be stored in distributed storage
systems.

I In Step 2, subsamples X̌ = (x̌1 · · · x̌b) can be processed
in parallel using different computing nodes.

I X∗ = (X̌; n∗) resembles a conventional bootstrap sample of
size n with at most b = {bnγc |γ ∈ [0.6,0.9]} distinct data
points. Element n∗i of n∗ = (n∗1, . . . ,n

∗
b) denotes the

multiplicity of original subsample data point x̌i at the
bootstrap sample X∗.

I BLB is computationally less complex than the conventional
bootstrap. E.g., in the BLB scheme, EF∗n [X∗] is computed
by b summations (+) and b multiplications (×) as
EF∗n [X∗] = 1

n
∑b

i=1 n∗i x̌i , whereas in conventional method n
summations (+) are needed as EF∗n [X∗] = 1

n
∑n

i=1 x∗i .
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The Bag of Little Bootstraps (BLB)
Advantages

I In comparison with the conventional bootstrap, less
computational resources are needed.

I BLB is scalable and well suited for distributed computing
architectures and storage systems.

Disadvantages

I The estimating equations need to be (re)solved for all
bootstrap samples of all bags (overall s × r times). This is
prohibitively expensive especially when a full optimization
problem need to be numerically solved (e.g. matrix
inversion or fixed-point iterative algorithm).

I The method is not statistically robust, in the sense that
outlier contamination of only one subsample ruins the end
result of the whole scheme.
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The Fast and Robust Bootstrap (FRB)

FRB method [Salibian-Barrera, et al., 2008] is applicable for
estimators θ̂n ∈ Rd that can be expressed as a solution to a
system of smooth Fixed Point equations

θ̂n = Q(θ̂n; X), (1)

where Q : Rd → Rd and Q() is continuous and differentiable
The bootstrap replicated estimator θ̂

∗
n then solves

θ̂
∗
n = Q(θ̂

∗
n; X∗), (2)

Fixed point equations usually converge fast, in few iterations.
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The Fast and Robust Bootstrap (FRB)
Instead of computing θ̂

∗
n, we compute an approximation:

θ̂
1∗
n = Q(θ̂n; X∗), (3)

Since the distribution of θ̂
1∗
n typically underestimates the

sampling variability of θ̂n, a linear correction based on Taylor
approximation of function Q is applied as follows:

θ̂
R∗
n = θ̂n +

[
I−∇Q(θ̂n; X)

]−1(
θ̂

1∗
n − θ̂n

)
, (4)

where ∇Q (·) ∈ Rd×d is the matrix of partial derivatives w.r.t.
θ̂n.

Q(θ̂n; X∗(1))

Q(θ̂n; X∗(2))

...

Q(θ̂n; X∗(r))

θ̂
R∗(1)
n

θ̂
R∗(2)
n

...

θ̂
R∗(r)
n

ξ(θ̂
R∗(1)
n , θ̂

R∗(2)
n , · · · , θ̂R∗(r)

n )X = (x1 · · · xn) → θ̂n
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The Fast and Robust Bootstrap (FRB)
Advantages

I Fast to compute, as the initial estimator θ̂n is computed
only once (e.g, for the full data set X). One step
improvement θ̂

1∗
n requires only one iteration of FP

equation.
I Robust against outliers. For instance in case of the

MM-regression estimator, it has been shown that equation
(4) remains bounded if θ̂n is a reliable estimate of θ and
there are only p (the dimension of the regression model)
non-outlier data points in the bootstrap sample X∗.

Disadvantages

I Not scalable and difficult to parallelize across distributed
computing systems.θ̂n computed from large scale data X
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Simple example formulation for M-estimator of
linear regression

Let X = {(y1, z>1 )>, . . . , (yn, z>n )>}, zi ∈ Rp, be a sample of
independent random vectors that follow the linear model:

yi = z>i θ + σ0ei for i = 1, . . . ,n, (5)

where:
I θ ∈ Rp : The unknown parameter vector.
I ei : Noise terms are i.i.d. random variables from a

symmetric distribution with unit scale.
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Simple example formulation FRB for M-estimator
of linear regression

The M-estimators of regression are defined as:

1
n

n∑
i=1

ψ

(
yi − z>i θ̂n

σ̂n

)
zi = 0, (6)

where the scale parameter σ̂n needs to be estimated from the
data. M-estimator is obtained by generalizing the maximum
likelihood estimator (MLE) such that the ψ function need not be
related to any particular error density, but it can be any
continuous, bounded and odd function.
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Example formulation for M-estimator of linear
regression

Equation (6) can be expressed in form of a fixed-point
estimating equation:

θ̂n = Q(θ̂n; Z) = (Z>WZ)−1Z>Wy, (7)

where

Z> = (z1, · · · , zn) ∈ Rp×n, y = (y1, · · · , yn)> ∈ Rn×1,

W = diag{ω1, · · · , ωn},
ωi = ψ(ri/σ̂n)/ri and ri = yi − z>i θ̂n,

for i = 1, . . . ,n.
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Example formulation for M-estimator of linear
regression

For a given bootstrap sample X∗ = {(y∗1 , z∗>1 )>, . . . , (y∗n , z∗>n )>},
the one-step iteration of the fixed-point equation becomes:

θ̂
1∗
n = Q(θ̂n; X∗) = (Z∗>W∗Z∗)−1Z∗>W∗y∗, (8)

where

Z∗> = (z∗1, · · · , z∗n) ∈ Rp×n, y∗ = (y∗1 , · · · , y∗n )> ∈ Rn×1,

W∗ = diag{ω∗1, · · · , ω∗n},
ω∗i = ψ(r∗i /σ̂

∗
n)/r∗i and r∗i = y∗i − z∗>i θ̂n,

for i = 1, . . . ,n.
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Example formulation for M-estimator of linear
regression

The FRB replication of θ̂n is obtained by applying the correction
term on equation (8).

θ̂
R∗
n = θ̂n +

[
I−∇Q(θ̂n; X)

]−1(
θ̂

1∗
n − θ̂n

)
, (9)

where ∇Q (·) ∈ Rd×d is the matrix of partial derivatives of the
fixed-point equation (7) w.r.t. θ̂n,

∇Q(θ̂n; X) =
∂(Z>WZ)−1Z>Wy

∂θ̂n
.
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FAST AND ROBUST BOOTSTRAP FOR BIG DATA
(BLFRB)

The main contribution is to introduce a new bootstrap scheme
that is suitable for analyzing large multivariate data sets.
The BLFRB method [S. Basiri, E. Ollila, V. Koivunen, 2015]
combines the desirable properties of the BLB and FRB
methods as it is:

1. Scalable to large volume data sets and compatible with
distributed data storage and processing architectures.

2. Less complex and fast to compute as the estimating
equations are computed only once for each bag.

3. Statistically robust and works reliably in the face of outliers.
Bootstrap analysis of fixed-point robust estimators (e.g.
S-estimator, MM-estimator, etc.) is facilitated, thanks to the
low complexity of the scheme.
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FAST AND ROBUST BOOTSTRAP FOR BIG DATA

Recall that the main computational burden of the BLB scheme
is in step 3 of the algorithm where, the estimating equations
need to be (re)solved for each bootstrap sample X ∗.
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FAST AND ROBUST BOOTSTRAP FOR BIG DATA
I Such computational complexity can be drastically reduced by

computing the FRB replications instead. This can be done locally within
each bag:

I Let θ̂n,b be a solution to θ̂n = Q(θ̂n; X), for subsample
X̌ ∈ Rd×b:

θ̂n,b = Q(θ̂n,b; X̌). (10)
I Let X∗ ∈ Rd×n be a bootstrap sample of size n randomly

resampled with replacement from distinct data subset X̌ of
size b;

I The FRB replication of θ̂n,b can be obtained by

θ̂
R∗
n,b = θ̂n,b +

[
I−∇Q(θ̂n,b; X̌)

]−1(
θ̂

1∗
n,b − θ̂n,b

)
, (11)

where θ̂
1∗
n,b = Q(θ̂n,b; X∗) is the one-step estimator and

∇Q (·) ∈ Rd×d is the matrix of partial derivatives w.r.t. θ̂n,b.
I Note: The initial estimate θ̂n,b and correction

[
I−∇Q(θ̂n,b; X̌)

]−1 are
computed only once for each distinct data subset.
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THE PROPOSED BLFRB PROCEDURE
1: Draw s disjoint subsamples X̌ = (x̌1 · · · x̌b) of smaller size

b = {bnγc |γ ∈ [0.6,0.9]}.
for each subsample X̌
2: Generate r bootstrap samples X∗ = (X̌; n∗) according to

the BLB procedure.
3: a: Find the estimate θ̂n,b based on X̌.

b: For each bootstrap sample X∗ compute the FRB replication
θ̂

R∗
n,b using θ̂n,b.

4: Compute the bootstrap confidence intervals ξ̂
∗

based on
the population of r FRB replicated values θ̂

R∗
n,b.

end
5: Average the computed values of ξ̂

∗
over the subsamples,

i.e., ξ̂
∗

= 1
s
∑s

k=1 ξ̂
∗(k)

.
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Example formulation of BLFRB for MM-estimator
of linear regression

Let X = {(y1, z>1 )>, . . . , (yn, z>n )>}, zi ∈ Rp, be a sample of
independent random vectors that follow the linear model:

yi = z>i θ + σ0ei for i = 1, . . . ,n, (12)

where:
I θ ∈ Rp : The unknown parameter vector.
I ei : Noise terms are i.i.d. random variables from a

symmetric distribution with unit scale.
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Example formulation of BLFRB for MM-estimator
of linear regression

Highly robust MM-estimators [V. J. Yohai, 1987] proceed in 3
stages: (1) initial highly robust estimate that is not necessarily
efficient is found; (2) M-estimate of error scale is computed
based on residuals; (3) M-estimate of the parameter vector is
computed.

Two loss functions ρ0 : R→ R+ and ρ1 : R→ R+ are used
which determine the breakdown point and efficiency of the
estimator. The ρ0(·) and ρ1(·) functions are

I Symmetric,
I Twice continuously differentiable with ρ(0) = 0,
I Strictly increasing on [0, c] and constant on [c,∞) for some

constant c.
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Example formulation of BLFRB for MM-estimator
of linear regression

The MM-estimate of θ̂n satisfies

1
n

n∑
i=1

ρ′1

(
yi − z>i θ̂n

σ̂n

)
zi = 0 (13)

where σ̂n is a S-estimate of scale defined as follows.
I Consider M-estimate of scale ŝn(θ) obtained as a solution to:

1
n

n∑
i=1

ρ0

(
yi − z>i θ

ŝn(θ)

)
= m, (14)

where m = ρ0(∞)/2 is a constant. Let θ̃n be the argument that
minimizes ŝn(θ),

θ̃n = arg min
θ∈Rp

ŝn(θ),

then σ̂n = ŝn(θ̃n).
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Example formulation of BLFRB for MM-estimator
of linear regression

Simple computations yield the following FP representation of
(13) and (14):

θ̂n =

( n∑
i=1

ωiziz>i

)−1 n∑
i=1

ωiziyi , (15)

σ̂n =
n∑

i=1

υi(yi − z>i θ̃n), (16)

where

ri = yi − z>i θ̂n, ṙi = yi − z>i θ̃n,

ωi = ρ′1(ri/σ̂n)/ri and υi =
σ̂n

nm
ρ0(ṙi/σ̂n)/ṙi .
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Example formulation of BLFRB for MM-estimator
of linear regression

Let X∗ = (X̌; n∗) denote a BLFRB bootstrap sample based on subsample
X̌ = {(y̌1, ž>1 )>, . . . , (y̌b, ž>b )>}, ži ∈ Rp and a weight vector
n∗ = (n∗1 · · · n∗b ) ∈ Rb,

θ̂
1∗
n,b =

( b∑
i=1

n∗i ω̌i ži ž>i

)−1 b∑
i=1

n∗i ω̌i ži y̌i , (17)

σ̂1∗
n,b =

b∑
i=1

n∗i υ̌i(y̌i − ž>i θ̃n,b), (18)

where

ři = y̌i − ž>i θ̂n,b, r̃i = y̌i − ž>i θ̃n,b,

ω̌i = ρ′1(ři/σ̂n,b)/ři and υ̌i =
σ̂n,b

nm
ρ0(r̃i/σ̂n,b)/r̃i .
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Example formulation of BLFRB for MM-estimator
of linear regression

The BLFRB replications of θ̂n,b, are obtained from the linearly
corrected version of the one-step approximations in (17) and
(18):

θ̂
R∗
n,b = θ̂n,b + Mn,b(θ̂

1∗
n,b − θ̂n,b) + dn,b(σ̂1∗

n,b − σ̂n,b), (19)

where

Mn,b = σ̂n,b

( b∑
i=1

ρ′′1 (ři/σ̂n,b)ži ž>i

)−1 b∑
i=1

ω̌i ži ž>i ,

dn,b = k−1
n,b

( b∑
i=1

ρ′′1 (ři/σ̂n,b)ži ž>i

)−1 b∑
i=1

ρ′′1 (ři/σ̂n,b)ři ži

and kn,b =
1

nm

b∑
i=1

(
ρ′0(r̃i/σ̂n,b)r̃i/σ̂n,b

)
.
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STATISTICAL PROPERTIES
Statistical Convergence

Notation
I X = {x1, . . . ,xn}: A set of observed data as the outcome of i.i.d.

random variables X = {X 1, . . . ,X n} from an unknown
distribution P.

I Pn = n−1∑n
i=1 δxi : The empirical distribution (measure) formed

by X.

I P(k)
n,b = n−1∑b

i=1
n
b δx̌(k)

i
: the empirical distribution formed by

subsample X̌(k).
I P∗n,b = n−1∑n

i=1 δx∗
i
: The empirical distribution formed by

bootstrap sample X∗.
I φ(·): Functional representations of the estimator e.g.,

θ = φ(P), θ̂
(k)

n,b = φ(P(k)
n,b) and θ̂

∗
n,b = φ(P∗n,b).

I
d
=: Denotes that both sides have the same limiting distribution.
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STATISTICAL PROPERTIES
Statistical Convergence

Theorem
Consider P, Pn and P(k)

n,b as maps from a Donsker class F to R
such that Fδ = {f − g : f ,g ∈ F , {P(f − Pf )2}1/2 < δ} is
measurable for every δ > 0. Let φ to be Hadamard differentiable
at P tangentially to some subspace and θ̂n be a solution to a
system of smooth FP equations. Then as n,b →∞

√
n(θ̂

R∗
n,b − θ̂

(k)
n,b)

d
=
√

n(θ̂n − θ). (20)

See the proof in [S. Basiri, E. Ollila, V. Koivunen, 2015].

visa
Tarralappu
Donsker classes: sets of functions with the useful property that empirical processes indexed by these classes converge weakly to a certain Gaussian process. 
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STATISTICAL PROPERTIES
Statistical robustness

Notation:

Let X = {(y1, z>1 )>, . . . , (yn, z>n )>}, zi ∈ Rp, be a sample of iid
random vectors that follow the linear model, yi = z>i θ + σ0ei
for i = 1, . . . ,n, and let

I θ̂n be an estimator of the parameter vector θ based on X,
I qt , t ∈ (0, 1), denote the t th upper quantile of [θ̂n]l , where [θ̂n]l is the l th

element of θ̂n, l = 1, . . . , p e.g., Pr
(
[θ̂n]l > qt

)
= t .

I q̂∗t denote the BLB or BLFRB estimate of the qt based on a random
subsample X̌ of size b = {bnγc |γ ∈ [0.6, 0.9]} drawn from a big data
set X.

Definition: The upper breakdown point of q̂∗t is defined as the
minimum proportion of asymmetric outlier contamination in
subsample X̌ that can drive q̂∗t over any finite bound.
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STATISTICAL PROPERTIES
Statistical robustness

Theorem
In the original BLB setting with Least Square estimator, only
one outlying data point in a subsample X̌ is sufficient to drive
q̂∗t , t ∈ (0,1) over any finite bound and hence, ruining the end
result of the whole scheme.
See the proof in [S. Basiri, E. Ollila, V. Koivunen, 2015].
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STATISTICAL PROPERTIES
Statistical robustness

Theorem
Let X̌ = {(y̌1, ž>1 )>, . . . , (y̌b, ž>b )>}, be a subsample of size
b = {bnγc |γ ∈ [0.6,0.9]} randomly drawn from X following the linear
model yi = z>i θ + σ0ei for i = 1, . . . ,n. Assume that the explaining
variables ž>1 , . . . , ž

>
b ∈ Rp are in general position. Let θ̂n,b be an

MM-estimator of θ based on X̌ and let δb be the finite sample
breakdown point of θ̂n,b. Then in the BLFRB bag formed by X̌, all the
estimated quantiles q̂∗t , t ∈ (0,1) have the same breakdown point
equal to δb.
See the proof in [S. Basiri, E. Ollila, V. Koivunen, 2015].

Note: The finite sample breakdown point of MM-estimator can be set
close to 0.5. This provides the maximum possible statistical
robustness for the quantile estimates.
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STATISTICAL PROPERTIES
Statistical robustness

p n γ = 0.6 γ = 0.7 γ = 0.8

50
50000 0.425 0.475 0.491
200000 0.467 0.490 0.497
1000000 0.488 0.497 0.499

100
50000 0.349 0.449 0.483
200000 0.434 0.481 0.494
1000000 0.475 0.494 0.498

200
50000 0.197 0.398 0.465
200000 0.368 0.461 0.488
1000000 0.450 0.487 0.497

Table: Upper breakdown point of the BLFRB estimates of quantiles
for MM-regression estimator with 50% breakdown point and 95%
efficiency at the Gaussian model.
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NUMERICAL EXAMPLES
The model

We generate n = 50000 samples X = {(y1, z>1 )>, . . . , (yn, z>n )>}
from linear model with unknown parameters θ:

yi = z>i θ + σ0ei ,

where:
I The explaining variables zi have p-variate normal distribution Np(0, Ip)

with p = 50.
I The parameter vector θ = 1p.
I The noise terms, ei are i.i.d. from the standard normal distribution.
I The variance of the noise is σ2

0 = 0.1.
I The MM-estimator in the BLFRB scheme is tuned to have efficiency
O = 95% and breakdown point δ = 50%.

I The original BLB scheme uses the Least Square-estimator for
computation of the bootstrap estimates of θ.
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NUMERICAL EXAMPLES
Statistical Convergence of BLFRB

Consider the result of the BLFRB convergence theorem:

√
n(θ̂

R∗
n,b − θ̂

(k)
n,b)

d
=
√

n(θ̂n − θ).

I Given the above settings, the right hand side follows
Np(0, σ2

0/OIp) in distribution [V. J. Yohai, 1987, theorem
4.1].

I We form the distribution of the left hand side, by drawing a
random subsample X̌ of size b =

⌊
500000.7⌋ = 1946 and

performing steps 2 and 3 of the BLFRB procedure for X̌
using r = 1000 bootstrap samples.
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NUMERICAL EXAMPLES
Statistical Convergence of BLFRB
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Figure: (a) The true distribution of the right hand side of (20) along with the
obtained empirical distributions of the left hand side for two elements of θ̂

R∗
n,b

with the best and the worst estimates. (b) The average of all p BLFRB
estimated distributions, along with the true distribution. Note that the
averaged empirical distribution converges to the true cdf.
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NUMERICAL EXAMPLES
Performance evaluation

The parameter settings of the BLB and BLFRB procedures for the i th
element (i.e., l = 1, . . . , p) of θ̂n are as follows:

1: The bootstrap estimate of standard deviation (SD) of θ̂n for bag k is:

ξ̂
∗(k)
l = ŜD([θ̂

(k)

n,b]l ) =

(
r∑

j=1

(
[θ̂
∗(kj)
n,b ]l − [θ̂

∗(k·)
n,b ]l

)2

r − 1

)1/2

,

where [θ̂n,b]l denotes the l th element of θ̂n,b and
[θ̂
∗(k·)
n,b ]l = 1

r

∑r
j=1[θ̂

∗(kj)
n,b ]l .

2: ξ̂∗l = ŜD([θ̂n]l ) = 1
s

∑s
k=1 ŜD([θ̂

(k)

n,b]l ), l = 1, . . . , p.
3: The performance of the BLB and BLFRB are assessed by computing a

relative error defined as:

ε =

∣∣∣ŜD(θ̂n)− SDo(θ̂n)
∣∣∣

SDo(θ̂n)
,

where ŜD(θ̂n) = 1
p

∑p
l=1 ŜD([θ̂n]l ) and SDo(θ̂n) = σ0/

√
nO.
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NUMERICAL EXAMPLES
Performance evaluation

The bootstrap setup is as follows:
I The number of distinct data subsamples (bags) is s = 25,
I size of each subsample is b = bnγc = 1946 with γ = 0.7

(n = 50000)
I maximum number of bootstrap samples in each

subsample module is rmax = 300.
We start from r = 2 and continually add a new set of bootstrap
samples (while r < rmax ) to subsample modules.
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NUMERICAL EXAMPLES
Performance evaluation
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Figure: Relative errors of the BLB (solid line) and BLFRB (dashed
line) methods w.r.t. the number of bootstrap samples r are illustrated.
Both methods perform equally well when there are no outliers in the
data.
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NUMERICAL EXAMPLES
Lack of robustness of BLB

To show lack of robustness of the BLB, we introduce outlier by randomly
choosing one of the data points and multiplying it by a large α.
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NUMERICAL EXAMPLES
Statistical robustness of BLFRB

We severely contaminate the original data points of the first bag by
multiplying 40% (b0.4× bc = 778) of the data points by α = 1000.
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NUMERICAL EXAMPLES
Computational complexity

The computational complexity of the BLB and BLFRB methods
are compared.

I The same MM-estimator is used in both schemes.
I An identical computing system is used to compute the

relative errors after each iteration of the algorithms.
I The required processing time is cumulatively recorded

after each iteration of the algorithms.
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NUMERICAL EXAMPLES
Computational complexity
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Figure: The computed relative errors ε after adding each set of new
bootstrap samples are depicted w.r.t. the required processing time of
computation. The BLFRB is significantly faster to compute as the
(re)computation of the estimating equations is not needed in this method.



54/59

NUMERICAL EXAMPLES
Real world data

I We consider the simplified version of the the Million Song
Dataset (MSD), available on the UCI Machine Learning
Repository.

I The data set X = {(y1, z>1 )>, . . . , (yn, z>n )>} contains
n = 515345 music tracks, where:

I yi (i.e., i = 1, . . . ,n) represents the released year of the i th
song (i.e., ranging from 1922 to 2011).

I zi ∈ Rp is a vector of p = 90 different audio features of each
song.

I The features are the average and non-redundant
covariance values of the timbre vectors of the song.

I Linear regression can be used to predict the released year
of a song based on its audio features.
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NUMERICAL EXAMPLES
Real world data

I Considering the linear model yi = z>i θ + σ0ei , we use
BLFRB to conduct a fast, robust and scalable hypothesis
test:

H0 : bθcl = 0 vs. H1 : bθcl 6= 0,

where bθcl (i.e., l = 1, . . . ,p) denotes the l th element of θ.
I The BLFRB test of level α rejects the null hypothesis if the

computed 100(1− α)% confidence interval does not
contain 0.

I We make a test on each feature coefficient θi and discard it
if its confidence interval contains 0
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NUMERICAL EXAMPLES
Real world data

Here we run the BLFRB hypothesis test of level α = 0.05 with
the following bootstrap setup;

I Number of distinct data subsamples (bags) is s = 51,
I size of each subsample is b = bnγc = 9964 with γ = 0.7,

n = 515345.
I number of bootstrap samples in each subsample module is

r = 500.
The null hypothesis is accepted for 6 features numbered:
32,40,44,47,54,75. These results can be exploited to reduce
the dimension of the data by excluding the ineffective variables
from the regression analysis.
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NUMERICAL EXAMPLES
Real world data
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Figure: The 95% confidence intervals computed by BLFRB method is
shown for some of the audio features of the MSD data set. The null
hypothesis in accepted for those features having 0 inside the interval.
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CONCLUSION

A new bootstrap method is introduced with the aim of facilitating
bootstrap analysis of large multivariate data sets. The proposed
method is:

1. Scalable to large volume and high dimensional data sets.
2. Compatible with distributed data storage systems and

distributed parallel processing architectures.
3. Robust in the face of outliers.
4. Significantly faster to compute than its only counterpart

(i.e., the BLB scheme).
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