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Introduction

Linear signal processing enjoys the rich theory of linear systems. Linear filters are
also simple to implement.

(b)

(a)

Figure: Frequency selective filtering: (a) chirp signal, (b) linear FIR filter output.
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Introduction

Consider again the bandpass filtering example using a chirp signal degraded by
non-Gaussian noise. The linear FIR filter output is severely degraded.

(a)

(b)(b)

Figure: Frequency selective filtering in non-Gaussian noise: (a) linear FIR filter output,
(b) nonlinear filter
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Figure: RTT time series measured in seconds between a host at the University of Delaware
and hosts in (a) Australia (12:18 AM - 3:53 AM); (b) Sydney, Australia (12:30 AM - 4:03 AM);
(c) Japan (2:52 PM - 6:33 PM); (d) London, UK (10:00 AM - 1:35 PM). All plots shown in 1
minute interval samples.
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Figure: Byte counts measured over 14000 seconds in a web server of the ECE
Department at the University of Delaware viewed through different aggregation intervals:
from top to bottom, 10ms, 100ms 1s, 10s.
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Introduction Non-Gaussian Random Processes

In this course we will considers two model families that encompass a large class of
random processes with different tail characteristics:

generalized Gaussian distribution

stable distributions

The tail of a distribution can be measured by the mass of the tail (order), defined
as Pr(X > x) as x → ∞.
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Figure: Mass of the tail of a Gaussian distribution
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Introduction Non-Gaussian Random Processes

The justification for using stable distribution models lies in the generalized central
limit theorem which includes the well known “traditional” CLT as a special case.

A random variable X is stable if it can be the limit of a normalized sum
of i.i.d. random variables.
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Introduction Non-Gaussian Random Processes

UNIFORM CAUCHY
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Figure: Traditional Vs. generalized CLT. The plots show the normalized sum of 1, 2, 3,
10 and 30 uniform(-1,1) or Cauchy(0,1) random variables
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Non-Gaussian Models Generalized Gaussian Distributions

Generalized Gaussian Distributions

Definition (Generalized Gaussian Distribution)

The p.d.f. for the generalized Gaussian distribution is

f (x) =
k

2σΓ(1/k)
exp−(|x−β|/σ)k

, (2)

where Γ(·) is the Gamma function Γ(x) =
∫ ∞
0

tx−1e−tdt.

The scale is determined by σ > 0; impulsiveness related to k > 0.

The standard Gaussian distribution is a special case for k = 2.

For k = 1, the Laplacian, distribution is

f (x) =
1

2σ
e−|x−β|/σ. (3)

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 5 / 36



Non-Gaussian Models Generalized Gaussian Distributions
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Figure: Generalized Gaussian density functions for different values of k.
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Non-Gaussian Models Generalized Gaussian Distributions
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Figure: Tails of the Generalized Gaussian density functions for different k.
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Non-Gaussian Models Stable Distributions

Definition (Stable Random Variables)

A random variable X is stable if for X1 and X2 independent copies of X and for
arbitrary positive constants a and b, there are constants c and d such that

aX1 + bX2
d
= cX + d . (4)

Shape of X is preserved under addition up to scale and shift.

For Gaussian random variables, c2 = a2 + b2 and d = (a + b − c)µ where µ is the
mean of the parent Gaussian distribution.
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Non-Gaussian Models Stable Distributions

Other stable distributions are the Cauchy and Lévy distributions. The density
function, for X ∼ Cauchy(γ, β) has the form

f (x) =
1

π

γ

γ2 + (x − β)2
, −∞ < x < ∞. (5)

The Lévy density function is totally skewed concentrating on (0,∞). The density
function for X ∼ Lévy(γ, δ) has the form

f (x) =

√

γ

2π

1

(x − δ)3/2
exp

(

− γ

2(x − δ)

)

, −δ < x < ∞. (6)
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Non-Gaussian Models Symmetric Stable Distributions

Symmetric Stable Distributions

Symmetric α-stable or SαS distributions are defined when the skewness parameter
δ is set to zero. These can be characterized by the characteristic function

φ(ω) = E exp(jωX ) =

∫ ∞

−∞
exp(jωx)f (x)dx (7)

Definition (Characteristic Function of SαS Distributions)

A symmetrically stable random variable is characterized by

φ(ω) = e−γ|ω|α . (8)
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Non-Gaussian Models Symmetric Stable Distributions
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Figure: Density functions of Symmetric stable distributions for different values of the
tail constant α.
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Non-Gaussian Models Symmetric Stable Distributions
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Figure: Tails of symmetric stable distributions for different values of the tail constant α.
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Non-Gaussian Models Generalized Central Limit Theorem

Generalized Central Limit Theorem

Theorem (Generalized Central Limit Theorem)

Let X1,
X2, · · · be an independent, identically distributed sequence of (possibly shift
corrected) random variables. There exist constants an such that as n → ∞ the
sum

an(X1 + X2 + · · · ) d→ Z (10)

if and only if Z is a stable random variable with some 0 < α ≤ 2.

The generalized CLT constitutes a strong argument compelling the use of stable
models in practice.
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Non-Gaussian Models Generalized Central Limit Theorem

Figures 7 and 8 illustrate the impulsive behavior of symmetric stable processes as
the characteristic exponent α is varied.
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Figure: Impulsive behavior of i.i.d. α-stable signals as the tail constant α is varied.
Signals are plotted twice under two different scales.
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Non-Gaussian Models Generalized Central Limit Theorem
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Figure: Impulsive behavior of i.i.d. α-stable signals as the tail constant α is varied.
Signals are plotted twice under two different scales.
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Statistical Foundations of Filtering

The location estimate:

Suppose that a constant signal β is transmitted through a channel which adds
Gaussian noise Zi . Several independent observations Xi are measured giving

Xi = β + Zi i = 1, 2, · · · ,N.

Given X1, X2, · · · , XN , the goal is to derive a “good” estimate of β.
Estimates of this kind are known as location estimates, a key in the formulation of
the optimal filtering problem.
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Statistical Foundations of Filtering

Several methods of estimating β are possible.

The sample mean:

β̄N = X̄ =
1

N

N
∑

i=1

Xi

The sample median β̃N = X̃ .

The trimmed-mean (the largest and smallest samples are first discarded and
the remaining N − 2 samples are averaged.)

Which one of these estimators, if any, is correct will depend on the criterion which
is selected.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

Location Estimation in Gaussian Noise

Assume that X1,X2, · · · ,XN , are i.i.d. Gaussian with a constant but unknown
mean β. The Maximum Likelihood estimate of location is the value β̂ which
maximizes the likelihood function

f (X1,X2, · · · ,XN ;β) =
N
∏

i=1

f (Xi − β)

=

N
∏

i=1

1√
2πσ

e−(Xi−β)2/2σ2

(5)

=

(

1

2πσ2

)N/2

e−
∑N

i=1(Xi−β)2/2σ2

.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

The ML estimate of location is the value β̂ which minimizes the least squares sum

β̂ML = arg min
β

N
∑

i=1

(Xi − β)2. (6)

The value that minimizes the sum, results in the sample mean

β̂ML =
1

N

N
∑

i=1

Xi . (7)

Note that the sample mean is unbiased since E{β̂ML} = (1/N)
∑N

i=1 E{Xi} = β.

As a ML estimate, it is efficient having its variance, in (1), reach the Cramér-Rao
bound.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

Location Estimation in Generalized Gaussian Noise

In the generalized Gaussian distribution case, the Maximum Likelihood estimate of
location is

f (X1,X2, · · · ,XN ;β) =

N
∏

i=1

fγ(Xi − β)

=
N
∏

i=1

C e−|Xi−β|γ/σ

= CNe−
∑N

i=1|Xi−β|γ/σ, (8)

where C is a normalizing constant, and γ is the dispersion parameter.
Maximizing the likelihood function is equivalent to

β̃ML = arg min
β

N
∑

i=1

|Xi − β|γ . (9)

Gonzalo R. Arce (Department of Electrical and Computer Engineering University of Delaware arce@ee.udel.edu) Fall 2008 19 / 39



Statistical Foundations of Filtering Maximum Likelihood Estimation

β̃ML = arg min
β
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Figure: Cost functions for the observation samples
X1 = −3, X2 = 10, X3 = 1, X4 − 1, X5 = 6 for γ = 0.5, 1, and 2.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

When the dispersion parameter is 1, the model is Laplacian and the optimal
estimator minimizes

β̃ML = arg min
β

N
∑

i=1

|Xi − β|. (10)

The solution to the above is the sample median as it is shown next.
Define the cost function in (10) as L1(β). For values of β in the interval
−∞ < β ≤ X(1), L1(β) is simplified to

L1(β) =

N
∑

i=1

(

X(i) − β
)

=

N
∑

i=1

X(i) − Nβ. (11)

This, as a direct consequence that in this interval, X(1) ≥ β.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

For N odd there is an integer k, such that the slopes over the intervals
(X(k−1),X(k)] and (X(k),X(k+1)], are negative and positive, respectively. From
(14), these two conditions are satisfied if both

k <
N

2
and k >

N

2
− 1

hold. Both constraints are met when k = N+1
2

β̂ML = arg min
β

N
∑

i=1

|Xi − β|

=

{

X( N+1
2 ) N odd

(

X( N
2 ),X( N

2 )

]

N even

= MEDIAN(X1,X2, · · · ,XN). (15)
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Statistical Foundations of Filtering Maximum Likelihood Estimation

Location Estimation in Stable Noise

Maximum likelihood estimation requires the knowledge of the density function.
Among the class of symmetric stable densities, only the Gaussian (α = 2) and
Cauchy (α = 1) distributions have closed-form expressions.

The only non-Gaussian distribution for which we have a closed form
expression is the Cauchy distribution.

ML estimates under the Cauchy model can be made tunnable acquiring
remarkable efficiency over the entire spectrum of stable distributions.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

Given a set of i.i.d. samples X1,X2, · · · ,XN obeying the Cauchy distribution with
scaling factor k,

f (x − β) =
k

π

1

k2 + (x − β)2
, (16)

the location parameter β is to be estimated from the data samples as the value β̂k

which maximizes the likelihood function

β̂k = arg max
β

N
∏

i=1

f (Xi − β) = arg max
β

(

k

π

)N N
∏

i=1

1

k2 + (Xi − β)2
(17)
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Statistical Foundations of Filtering Maximum Likelihood Estimation

This is equivalent to minimizing

Gk(β) =

N
∏

i=1

[k2 + (Xi − β)2]. (18)

Given k > 0, the ML location estimate is known as the sample myriad and is
given by

β̂k = arg min
β

N
∏

i=1

(

k2 + (Xi − β)2
)

(19)

= MYRIAD{k;X1,X2, · · · ,XN}.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

The sample myriad involves the free parameter k (refered to as the linearity

parameter). The behavior of the myriad is markedly dependent on the value of k.
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Figure: Myriad cost functions for the observation samples
X1 = −3, X2 = 10, X3 = 1, X4 − 1, X5 = 6 for k = 20, 2, 0.2.
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Statistical Foundations of Filtering Maximum Likelihood Estimation

Least Logarithmic Deviation

The sample myriad minimizes

Gk(β) =

N
∏

i=1

[k2 + (Xi − β)2].

Since the logarithm is a strictly monotonic function, then the sample myriad will
also minimize log Gk(β).

MYRIAD{k;X1, · · · ,XN} = arg min
β

N
∑

i=1

log
[

k2 + (Xi − β)2
]

. (20)
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Statistical Foundations of Filtering Maximum Likelihood Estimation

Geometrical Interpretation

The observations X1, X2, · · · , XN are placed along the real line. Next, a vertical
bar that runs horizontally through the real line is added. The length of the vertical
bar is equal to k. Each of the terms

(

k2 + (Xi − β)2
)

(21)

in (20), represents the distance from point A, at the end of the vertical bar, to the
sample point Xi .
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Statistical Foundations of Filtering Maximum Likelihood Estimation

The sample myriad, β̂k , indicates the position of the bar for which the product of
distances from point A to the samples X1, X2, · · · , XN is minimum. Any other
value, such as x = β′, produces a higher product of distances.
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Figure: (a) The sample myriad, β̂, minimizes the product of distances from point A to
all samples. (b) the myriad as k is reduced.
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Median and Weighted Median Smoothers Weighted Median Smoothers

Weighted Median Smoothers

Running medians are temporally blind.

All observation samples are treated equally regardless of their location within
the observation window.

Better smoothers are obtained if weighting is allowed.
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WW W
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Figure: The weighted median smoothing operation .
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Median and Weighted Median Smoothers Weighted Median Smoothers

Statistical Foundations

Although time–series, in general, exhibit temporal correlation, the
independent but not identically distributed model can be used to synthesize
the mutual correlation.

The estimate Y (n) can rely more on the sample X (n) than on the other
samples. X (n) is more reliable than X (n − 1) or X (n + 1), which in turn are
more reliable than X (n − 2) or X (n + 2), and so on.

By assigning different variances (reliabilities) to the independent but not
identically distributed location estimation model, the temporal correlation
used in time-series smoothing is synthesized.
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Median and Weighted Median Smoothers Weighted Median Smoothers

For the generalized Gaussian distribution, where the samples have a common
location parameter β, but different scale parameter σi . The ML estimate of
location is

Gp(β) =

N
∑

i=1

1

σp
i

|Xi − β|p. (6)

In the special case of the Gaussian distribution (p = 2), the ML estimate reduces
to the normalized weighted average

β̂ = arg min
β

N
∑

i=1

1

σ2
i

(Xi − β)2 =

∑N
i=1 Wi · Xi
∑N

i=1 Wi

(7)

where Wi = 1/σ2
i > 0.
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Median and Weighted Median Smoothers Weighted Median Smoothers

In the case of a Laplacian distribution (p = 1), the ML estimate minimizes

G1(β) =
N
∑

i=1

1

σi

|Xi − β|. (8)

where Wi
△
= 1/σi > 0. G1(β) is piecewise linear and convex.

The value β minimizing (8) is one of the samples X1, X2, . . . , XN . The weighted
median output is defined as

Y (n) = arg min
β

N
∑

i=1

Wi |Xi − β|

= MEDIAN[W13X1(n), W23X2(n), · · · , WN3XN(n)]

where Wi > 0 and 3 is the replication operator defined as

Wi3Xi =

Wi times
︷ ︸︸ ︷

Xi , Xi , · · · , Xi .
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Median and Weighted Median Smoothers Weighted Median Smoothers

Weighted Median Smoothing Computation

Given the weight vector W = 〈1, 2, 3, 2, 1〉. For X(n) = [12, 6,
4, 1, 9], the weighted median smoother output is

Y (n) = MEDIAN [ 1312, 236, 334, 231, 139 ]
= MEDIAN [ 12, 6, 6, 4, 4, 4, 1, 1, 9 ]
= MEDIAN [ 1, 1, 4, 4, 4, 6, 6, 9, 12 ]
= 4

(9)

The standard median output for the given input is Y (n) = 6.
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Median and Weighted Median Smoothers Weighted Median Smoothers

The Center Weighted Median Smoother

WM smoothers can emphasize or deemphasize specific input samples. The sample
most correlated with the desired estimate is the center observation sample. This
observation leads to the center weighted median (CWM) smoother:

Y (n) = MEDIAN[X1, . . . , Xc−1, Wc3Xc , Xc+1, . . . , XN ],

where Wc is an odd positive integer and c = (N + 1)/2 = N1 + 1 is the index of
the center sample.
When Wc = 1, we get a median smoother, and for Wc ≥ N, the CWM reduces to
an identity operation.
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Median and Weighted Median Smoothers Weighted Median Smoothers
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Figure: Effects of increasing the center weight of a CWM smoother of size N = 9
operating on the voiced speech “a”.
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Median and Weighted Median Smoothers Weighted Median Smoothers

The output of a CWM smoother is equivalent to computing

Y (n) = MEDIAN
[

X(k), Xc , X(N+1−k)

]

, (14)

where k = (N + 2−Wc)/2 for 1 ≤Wc ≤ N, and k = 1 for Wc > N.
Since Xc = X (n), the output of the smoother is identical to the input as long as
X (n) lies in the interval

[

X(k),X(N+1−k)

]

.
If Xc > X(N+1−k) the smoother outputs X(N+1−k), guarding against a possible
aberrant data point being taken as the output. Similarly, the smoother’s output is
X(k) if the sample X (n) is smaller than this order statistic.

x (1) x (N)x (k)
x (N+1-k)

Figure: The center weighted median smoothing operation.
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Median and Weighted Median Smoothers Weighted Median Smoothers
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Figure: An example of the CWM smoother operating on a Laplacian distributed sequence

with unit variance. Shown are the input and output sequences as well as the trimming statistics

X(k) and X(N+1−k). N = 25 and k = 7.
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Median and Weighted Median Smoothers Weighted Median Smoothers

Application of CWM Smoother To Image Cleaning

Figure: Impulse noise cleaning with a 5 × 5 CWM smoother: (a) original, (b) image with salt

and pepper noise, (c) CWM smoother with Wc = 15, (d) CWM smoother with Wc = 5.
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Median and Weighted Median Smoothers Weighted Median Smoothers

Figure: (Enlarged) Noise-free image (left), 5× 5 median smoother (center), and 5× 5
mean smoother (right).
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Myriad Smoothers Running Myriad Smoothers

Running Myriad Smoothers

Given an observation vector X(n) = [X1(n),X2(n), . . . ,XN(n)] and a fixed positive
(tunable) value of K , the running myriad smoother output at time n is computed
as

YK (n) = MYRIAD[K ;X1(n),X2(n), . . . ,XN(n)]

= arg min
β

N
∏

i=1

[

K 2 + (Xi (n) − β)2
]

. (4)

= arg min
β

N
∑

i=1

log
[

K 2 + (Xi (n) − β)2
]

. (5)

The myriad YK (n) is thus the value of β that minimizes the above cost function.
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Myriad Smoothers Running Myriad Smoothers

The definition of the sample myriad involves the free-tunable parameter K . This
parameter will be shown to play a critical role in characterizing the behavior of the
myriad.

Figure: Myriad cost functions for different values of k
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Myriad Smoothers Running Myriad Smoothers

Property (Linear Property)

Given a set of samples, X1,X2, . . . ,XN , the sample myriad β̂K converges to the
sample average as K → ∞. This is,

lim
K→∞

β̂K = lim
K→∞

MYRIAD(K ;X1, . . . ,XN)

=
1

N

N
∑

i=1

Xi . (6)
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Myriad Smoothers Running Myriad Smoothers

Definition (Sample mode-myriad)

Given a set of samples X1, X2, . . . , XN , the mode-myriad estimator, β̂0, is defined
as

β̂0 = lim
K→0

β̂K , (10)

where β̂K = MYRIAD(K ;X1,X2, . . . ,XN).

Property (Mode Property)

The mode-myriad β̂0 is always equal to one of the most repeated values in the
sample. Furthermore,

β̂0 = arg min
Xj∈M

N
∏

i=1,Xi 6=Xj

|Xi − Xj |, (11)

where M is the set of most repeated values.
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Myriad Smoothers Running Myriad Smoothers

Example

Denoising of a very impulsive signal.

Figure: Running smoothers in stable noise (α = 0.2). All smoothers of size 121; (a)
original blocks signal, (b) corrupted signal with stable noise, (c) the output of the
running mean, (d) the running median, (e) the running FLOM smoother, and (f) the
running mode-myriad smoother.
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Myriad Smoothers Running Myriad Smoothers

Figure: The role of the linearity parameter when the myriad is looked as a maximum
likelihood estimator. When K is large, the generating density function is spread and the
data are visualized as well-behaved (the optimal estimator is the sample average). For
small values of K , the generating density becomes highly localized, and the data are
visualized as very impulsive (the optimal estimator is a cluster locator).
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Myriad Smoothers Running Myriad Smoothers

Figure: Functionality of the myriad as K is varied. Tuning the linearity parameter K

adapts the behavior of the myriad from impulse-resistant mode-type estimators (small
K ) to the Gaussian-efficient sample mean (large K ).

Empirical selection of K:

Linear type K ≈ X(N) − X(1)

Mode type K ≈ mini,j |Xi − Xj |
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Myriad Smoothers Running Myriad Smoothers

Figure: Values of the myriad as a function of K for the following data sets: (solid)
original data set = 0, 1, 3, 6, 7, 8, 9; (dash-dot) original set plus an additional observation
at 20; (dotted) additional observation at 100; (dashed) additional observations at 800,
-500, and 700.
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Myriad Smoothers Optimality of the Sample Myriad

Optimality of the Sample Myriad

Optimality In The α-Stable Model

Proposition

Let Tα,γ(X1,X2, . . . ,XN) denote the maximum likelihood location estimator
derived from a symmetric α-stable distribution with characteristic exponent α and
dispersion γ. Then,

lim
α→0

Tα,γ(X1,X2, . . . ,XN) = MYRIAD {0;X1,X2, . . . ,XN} . (14)

The α-stable triplet of optimality points satisfied by the myriad:

α = 2 ↔ K = ∞
α = 1 ↔ K = γ

α = 0 ↔ K = 0
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Myriad Smoothers Optimality of the Sample Myriad

Proposition

Let α and γ denote the characteristic exponent and dispersion parameter of a
symmetric α-stable distribution. Let Ko(α, γ) denote the optimal tuning value of
K in the sense that β̂Ko

minimizes a given performance criterion (usually the
variance) among the class of sample myriads with non negative linearity
parameter. Then,

Ko(α, γ) = Ko(α, 1)γ. (15)

A simple empirical formula is

K (α) =

√

α

2 − α
, (16)
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Myriad Smoothers Optimality of the Sample Myriad

Figure: Empirical α-K curve for α-stable distributions. The curve values at α = 0, 1,

and 2 constitute the optimality points of the α-stable triplet.
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Myriad Smoothers Weighted Myriad Smoothers

Weighted Myriad Smoothers

Given N observations {Xi}N
i=1 and nonnegative weights {Wi ≥ 0}N

i=1, let the input

and weight vectors be defined as X
△
= [X1,X2, . . . ,XN ]T and

W
△
= [W1,W2, . . . ,WN ]T , respectively. For a given nominal scale factor K , the

underlying random variables are assumed to be independent and Cauchy
distributed with a common location parameter β, but varying scale factors
{Si}N

i=1: Xi ∼ Cauchy(β,Si ):

fXi
(Xi ;β,Si ) =

1

π

Si

S2
i + (Xi − β)2

, −∞ < Xi <∞, (17)

and where

Si
△
=

K√
Wi

> 0, i = 1, 2, . . . ,N. (18)
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Myriad Smoothers Weighted Myriad Smoothers

Definition (Weighted myriad)

Let W = [W1,W2, . . . ,WN ] be a vector of nonnegative weights. Given K > 0, the
weighted myriad of order K for the data X1,X2, . . . ,XN is defined as

β̂K = MYRIAD {K ;W1 ◦ X1, . . . ,WN ◦ XN}

= arg min
β

N
∑

i=1

log
[

K 2 + Wi (Xi − β)2
]

, (22)

where Wi ◦ Xi represents the weighting operation in (22). In some situations, the
following equivalent expression can be computationally more convenient

β̂K = arg min
β

N
∏

i=1

[

K 2 + Wi (Xi − β)2
]

. (23)
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Myriad Smoothers Weighted Myriad Smoother Design

Figure: (a) Original image, (b) Image with 5% salt-and-pepper noise (PSNR=17.75dB)
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Myriad Smoothers Weighted Myriad Smoother Design

Figure: ((c) smoothed with 5 × 5 center weighted median with
Wc = 15(PSNR=37.48dB), (d) smoothed with 5 × 5 center weighted myriad with
Wc = 10, 000 and K = (X(21) + X(5))/2 (PSNR=39.98dB)
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Myriad Smoothers Weighted Myriad Smoother Design

Figure: Comparison of different filtering schemes (Enlarged). (a) Original Image, (b)
Image smoothed with a center weighted median (PSNR=37.48dB)
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Myriad Smoothers Weighted Myriad Smoother Design

Figure: Comparison of different filtering schemes (Enlarged). (c) Image smoothed with
a 5 × 5 permutation weighted median (PSNR=35.55dB), (d) Image smoothed with the
center weighted myriad (PSNR=39.98dB).
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Myriad Smoothers Weighted Myriad Smoother Design

Figure: Output of the Center weighted myriad smoother for different values of the
center weight Wc (a) Original image, (b) 100 (PSNR=36.74dB)
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Myriad Smoothers Weighted Myriad Smoother Design

Figure: Output of the Center weighted myriad smoother for different values of the
center weight Wc (c) 10,000 (PSNR=39.98dB), (d) 1,000,000 (PSNR=38.15dB).
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Myriad Smoothers Weighted Myriad Smoother Design

Myriadization

First, design a constrained linear smoother for Gaussian or noiseless
environments using FIR filter (smoother) design techniques.

Then, plug in these smoother coefficients into weighted myriad structure.

Choose the suitable K according to the impulsiveness of the environment.

Note that the smoother coefficients Wi must be non-negative and satisfy the
normalization condition

∑N
i=1 Wi = 1
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Myriad Smoothers Weighted Myriad Smoother Design

Example

Robust Low Pass Filter Design

Figure: Myriadizing a linear low-pass smoother in an impulsive environment: (a) chirp
signal, (b) chirp in additive impulsive noise, (c) ideal (no noise) myriad smoother output
with K = ∞, (e) K = 0.5, and (g) K = 0.2; Myriad smoother output in the presence of
noise with (d) K = ∞, (f) K = 0.5, and (h) K = 0.2.
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Weighted Myriad Filters Weighted Myriad Filter Design

Example: Robust Band-Pass Filter Design

Figure: Myriadizing a linear band-pass filter in an impulsive environment: (a) chirp
signal, (b) ideal (no noise) myriad smoother output with K = ∞, (c) K = 0.5, and (d)
K = 0.2.
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Weighted Myriad Filters Weighted Myriad Filter Design

Figure: Myriadizing a linear band-pass filter in an impulsive environment (continued):
(a) chirp in additive impulsive noise. Myriad filter output in the presence of noise with
(b) K = ∞, (c) K = 0.5, and (d) K = 0.2
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Measurements corrupted by noise

Measurements corrupted by noise can be modeled as:

y = ΦΦΦx + z,

where z is a zero-mean additive white noise.

Under some characteristics of the noise:

Notably finite second order statistics or

bounded noise in the `2 sense,

Having a measurement matrix ΦΦΦ that satisfies the RIP condition.

Then, there are algorithms to stably recover the sparse signals from the noisy
measurements.
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Algorithms to recover the sparse signal

Basis Pursuit Denoising (BPD)

min
x∈Rn
‖x‖1 subject to ‖y −ΦΦΦx‖2 ≤ ε,

for some small ε > 0, then ‖x− x̂‖2 ≤ Cε, for some constant C .

`1`1`1-regularized least squares (`1`1`1-LS)

min
x∈Rn

1

2
‖y −ΦΦΦx‖2

2 + λ‖x‖1,

where λ is a regularization parameter that balances the weight between the
data fidelity term and the `1 regularization term.

Greedy algorithms as

Orthogonal matching pursuit (OMP) and Regularized OMP
Iterative hard thresholding (IHT)
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Impulsive Noise Effects

x → y = ΦΦΦx → x̂

min
x∈Rn
‖x‖0 subject to ‖y −ΦΦΦx‖2 ≤ ε.
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Impulsive Noise Effects

x → y = ΦΦΦx + w → x̂

Traditional noise aware CS systems consider finite variance noise models
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`2`2`2 norm as data-fitting

Perform adequately under the assumption that the contaminating noise has
finite second order statistics.

Tends to be very sensitive to outliers or gross error present in the
measurements

Problem

How to address the CS reconstruction problem when the measurements are
corrupted by sparse or impulsive noise?

Impulsive noise has infinite or very large variance breaking the assumptions of
traditional LS-based recovery algorithms.

Strategy

Replace the commonly used `2 norm by M-estimators as data fidelity functions
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`p`p`p estimator

α̂αα = arg min
ααα

n∑
i=1

1

σp
i

|yi −ααα|p.

where yi are the observation samples.
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Myriad estimator

α̂αα = arg min
ααα

n∑
i=1

log[σ2 + (yi −ααα)2]

where yi are the observation samples.
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Lorentzian norm (LL2 norm)

The cost function of the myriad estimator can be extended to define a robust
metric, the Lorentzian norm for vectors in Rm

‖u‖LL2,γ =
m∑
i=1

log

(
1 +

u2
i

γ2

)
, γ > 0, u ∈ Rm.

Does not penalize large
deviations, leading to more
robust error metrics when
outliers are present.

The robustness depends on
the scale parameter γ
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Figure: Comparison of the `1 (black) norm, the Huber cost function
with c = 0.75 in (magenta) and the LL2 norm with γ = 1 (blue) and
γ = 0.1 (green) for the 1D case. The squared `2 norm (red) is
plotted as reference.
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Comparison of the `1 (black) norm, the Huber cost function with c = 0.75 in
(magenta) and the Lorentzian norm with γ = 1 (blue) and γ = 0.1 (green) for the
location estimation problem, with observation samples located in
x = {−1, 0, 1, 10}
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Lorentzian (Myriad) norm (LL2)

It is an everywhere continuous
function

It is convex near the origin

Large deviations are not heavily
penalized as in the case of `1 or `2
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Robust Sparse Signal Reconstruction

Approaches based on replacing the `2 norm by the robust metrics for the data
fidelity term.

1. `1`1`1-Based Methods

The `2 norm is replaced by the `1 norm in the data fitting term.

Constrained least absolute deviation (LAD) regression problem

min
x∈Rn
‖y −ΦΦΦx‖1 + τ‖x‖0.

Optimum under the ML assumption that the noise obeys a Laplacian distribution.

This problem is combinatorial and computationally expensive.

Relaxations to the `0 constraint have been proposed.
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2. `p`p`p-Based Methods

If the corrupting noise has heavier tails than the Laplacian distribution, the `p
norm, with 0 < p < 1 can be used

Recovery optimization problem

min
x∈Rn
‖y −ΦΦΦx‖pp + τ‖x‖1.

This problem is optimal under the ML criteria for GGD noise.

It is robust to very impulsive noise.

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 26 / 41



4. Lorentzian Based Methods

Appropriate for many impulsive environments using the Lorentzian norm as a
fitting term.

Lorentzian-Based Basis Pursuit

Signal estimate based on the following non-convex problem:

min
x∈Rn
‖x‖1 subject to ‖y −ΦΦΦx‖LL2,γ ≤ ρ.

Theorem (Upper bound for the reconstruction error)

Let ΦΦΦ be an m × n sensing matrix such that δ2s <
√

2− 1. Then for any signal
x0 ∈ Rn such that |supp(x0)| ≤ s, and observation noise z with ‖z‖LL2,γ ≤ ρ, the
solution to LBP, x∗, obeys the following bound:

‖x0 − x∗‖2 ≤ Csγ
√

m(eρ − 1),

where the constant Cs depends only on δ2s .

Problem: Slow and complex to solve!
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Lorentzian-Based Iterative Hard Thresholding Algorithm

Ideal optimization problem:

min
x∈Rn
‖y −ΦΦΦx‖LL2,γ subject to ‖x‖0 ≤ s

Iterative algorithm:

x (t+1) = Hs

(
x (t) + µ(t)ΦΦΦ

TWt(ΦΦΦx (t) − y)
)
,

where Hs(·) denotes the hard thresholding operator,

Wt(i , i) =
γ2

γ2 + (yi −φφφTi x (t))2
,

and φφφi denotes the i-th row on ΦΦΦ.
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Numerical experiments

Comparison of the performance of the following 8 robust methods:

`1-based coordinate descent (`1-CD)

`1 least absolute deviation `1-LAD solved by ADMM

Lorentzian-based basis pursuit (LBP)

Lorentzian-based iterative hard thresholding (LITH)

Lorentzian-based coordinate descent (L-CD)

Robust lasso (R-Lasso)

Huber iterative hard thresholding (HIHT)

`1-LS method Traditional CS method for comparisons
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Experimental Setup 1

Sparse signals of length n = 400, and sparsity s = 10.
Number of random measurements set to m = 100. Gaussian sensing matrices
α-stable noise models with α = 1
100 repetitions of each experiment averaged
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Figure: Clean and contaminated reduced random projections
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Sparse signal reconstruction
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(a) `1 − LS (SER=-6.6 dB)
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(f) R-Lasso (SER=8.1 dB)
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(g) `1-LAD (SER=16.9 dB)
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(h) Huber-IHT (SER=25.1 dB)
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Experimental Setup 3

Reconstruction of the Camera man image of size 256× 256
Image sampled by a random DCT ensambled (50%)
Number of random measurements m = 32718
Sparsity representation basis: Daubechies db4 wavelet
α-stable noise with α = 1
Scale parameter of the noise σ = 0.01
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(a) `1 − LS (SER=7.3 dB) (b) `1 − LAD (SER=19.6 dB)

(c) R-Lasso (SER=18.1 dB) (d) LBP (SER=20.7 dB)
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(e) LIHT (SER=19.4 dB) (f) `1 − CD (SER=20.3 dB)

(g) L-CD (SER=19.2 dB) (h) Huber-IHT (SER=19.4 dB)
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Robust Sparse Reconstruction Summary

Method Optimization problem SER for SER for Time*
signal [dB] image [dB] [s]

LBP ‖y − Φx‖LL2,γ + λ‖x‖1 24.0 20.7 10.58
LIHT ‖y − Φx‖LL2,γ s.t. ‖x‖0 ≤ s 24.0 19.4 2.13

R-Lasso 1
2
‖y − Φx− r‖2

2 + τx‖x‖1 + τr‖r‖1 8.1 18.1 7.23
L-CD ‖y − Φx‖LL2,γ + τ‖x‖0 25.1 19.2 6522.7
`1-CD ‖y − Φx‖1 + τ‖x‖0 28.2 20.3 3814.2
`1-LS 1

2
‖y − Φx‖2

2 + λ‖x‖1 -6.6 7.3 4.73
`1-LAD ‖y − Φx‖1 + τ‖x‖1 16.9 19.6 7.05

HIHT
∑M

i=1 ρ
( yi−Φi x

σ

)
s.t. ‖x‖0 ≤ s 25.1 19.4 90.78

Table: Summary of eight sparse reconstruction methods.

*Execution time required to reconstruct the cameraman image.

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 40 / 41



	

	



	
	
	
	
	
	
	
	


	Non-linear Title
	Mod_Chapter1 - Non-Gaussian Random Processes
	Mod_Chapter2 - Non-Gaussian Models
	Mod_Chapter4 - Statistical Foundations of Filtering
	Mod_Chapter5 - Median and Weighted Median Smoothers
	Mod_Chapter8 - Myriad Smoothers
	Mod_Chapter9 - Weighted Myriad Filters
	RobustCS_Slides V2 - Notitle



