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INTRODUCTION

Linear signal processing enjoys the rich theory of linear systems. Linear filters are
also simple to implement.

(b)

FIGURE: Frequency selective filtering: (a) chirp signal, (b) linear FIR filter output.
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INTRODUCTION

Consider again the bandpass filtering example using a chirp signal degraded by
non-Gaussian noise. The linear FIR filter output is severely degraded.

(b)

FIGURE: Frequency selective filtering in non-Gaussian noise: (a) linear FIR filter output,
(b) nonlinear filter
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INTRODUCTION
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FIGURE: RTT time series measured in seconds between a host at the University of Delaware
and hosts in (a) Australia (12:18 AM - 3:53 AM); (b) Sydney, Australia (12:30 AM - 4:03 AM);
(c) Japan (2:52 PM - 6:33 PM); (d) London, UK (10:00 AM - 1:35 PM). All plots shown in 1
minute interval samples.
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INTRODUCTION
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FIGURE: Byte counts measured over 14000 seconds in a web server of the ECE
Department at the University of Delaware viewed through different aggregation intervals:
from top to bottom, 10ms, 100ms 1s, 10s.

ZALO R. ARCE (Department of Electrical an FaLL 2008 8 /35



In this course we will considers two model families that encompass a large class of
random processes with different tail characteristics:

@ generalized Gaussian distribution
@ stable distributions

The tail of a distribution can be measured by the mass of the tail (order), defined
as P,(X > x) as x — oc.

Pr(X>x)

FIGURE: Mass of the tail of a Gaussian distribution
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The justification for using stable distribution models lies in the generalized central
limit theorem which includes the well known “traditional” CLT as a special case.

A random variable X is stable if it can be the limit of a normalized sum
of i.i.d. random variables.
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INTRODUCTION NON-GAUSSIAN RANDOM PROCESSES

UNIFORM CAUCHY

FicUre: Traditional Vs. generalized CLT. The plots show the normalized sum of 1, 2, 3,
10 and 30 uniform(-1,1) or Cauchy(0,1) random variables
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IONSEXGESIINBUIINOEE GENERALIZED GAUSSIAN DISTRIBUTIONS

Generalized Gaussian Distributions

DEFINITION (GENERALIZED GAUSSIAN DISTRIBUTION)

The p.d.f. for the generalized Gaussian distribution is

k «
f(x) = —(Ix=8l/2) 2
where I'(-) is the Gamma function [(x) = [~ e~ 'dt.

The scale is determined by o > 0; impulsiveness related to k > 0.

@ The standard Gaussian distribution is a special case for k = 2.
@ For k =1, the Laplacian, distribution is

() = poe A 3)

GONZALO R. ARCE (Department of Electrical an FaLL 2008 5/ 36



NON-GAUSSIAN MODELS

generalized gaussian density functions

GENERALIZED GAUSSIAN

DISTRIBUTIONS

25F

05

FaLL 2008

6/ 36



Tails of the generalized Gaussian density functions

GENERALIZED GAUSSIAN DISTRIBUTIONS
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INONSEXGESIINPUIINIEE STABLE DISTRIBUTIONS

DEFINITION (STABLE RANDOM VARIABLES)

A random variable X is stable if for X; and X5 independent copies of X and for
arbitrary positive constants a and b, there are constants ¢ and d such that

aXy + bXo L X +d. (4)

Shape of X is preserved under addition up to scale and shift.

For Gaussian random variables, ¢ = 2> + b% and d = (a+ b — c)u where p is the
mean of the parent Gaussian distribution.
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IO SEXGED ISP STABLE DISTRIBUTIONS

Other stable distributions are the Cauchy and Lévy distributions. The density
function, for X ~ Cauchy(~, 8) has the form

f(x):%m, —00 < X < 0. (5)

The Lévy density function is totally skewed concentrating on (0, 00). The density
function for X ~ Lévy(v,d) has the form

f(x)= \/Z(X 716)3/2 exp (— 2(XW_ 5)) , —0 < x<o0. (6)
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INONSEXESIINBUIINIEE  SYMMETRIC STABLE DISTRIBUTIONS

Symmetric Stable Distributions

Symmetric a-stable or SaS distributions are defined when the skewness parameter
§ is set to zero. These can be characterized by the characteristic function

oo

d(w) = Eexp(jwX) = / exp(jwx)f(x)dx @)

—00

DEFINITION (CHARACTERISTIC FUNCTION OF SaS DISTRIBUTIONS)

A symmetrically stable random variable is characterized by

p(w) = e VWl (8)

GONZALO R. ARCE (Department of Electrical an
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(EXGESVNPYIGOEIN SYMMETRIC STABLE DISTRIBUTIONS

Sas density for different values of o
T T T

FIGURE: Density functions of Symmetric stable distributions for different values of the
tail constant a.
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Tails of SaS density function for different values of a
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F1cUrE: Tails of symmetric stable distributions for different values of the tail constant a.

FALL 2008

18 / 36



IONSEXGESIINBUINOEE GENERALIZED CENTRAL LIMIT THEOREM

Generalized Central Limit Theorem

THEOREM (GENERALIZED CENTRAL LIMIT THEOREM)

Let Xl,

Xa, -+ be an independent, identically distributed sequence of (possibly shift
corrected) random variables. There exist constants a, such that as n — oo the
sum

X+ Xo+) S Z (10)

if and only if Z is a stable random variable with some 0 < o < 2.

The generalized CLT constitutes a strong argument compelling the use of stable
models in practice.
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IO EXUED ISP GENERALIZED CENTRAL LIMIT THEOREM

Figures 7 and 8 illustrate the impulsive behavior of symmetric stable processes as
the characteristic exponent « is varied.

P

s 8 B ¥

4 8 8B &

FI1GURE: Impulsive behavior of i.i.d. a-stable signals as the tail constant « is varied.
Signals are plotted twice under two different scales.
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INONSEXGESIINBUINOEE GENERALIZED CENTRAL LIMIT THEOREM
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FIGURE: Impulsive behavior of i.i.d. a-stable signals as the tail constant « is varied.
Signals are plotted twice under two different scales.
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STATISTICAL FOUNDATIONS OF FILTERING

The location estimate:

Suppose that a constant signal 3 is transmitted through a channel which adds
Gaussian noise Z;. Several independent observations X; are measured giving

Xi=B+Z P=1,2,--,N.

Given Xi, X5,---, Xy, the goal is to derive a “good” estimate of (.
Estimates of this kind are known as location estimates, a key in the formulation of
the optimal filtering problem.

GONZALO R. ARCE (Department of Electrical an
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STATISTICAL FOUNDATIONS OF FILTERING

Several methods of estimating 3 are possible.

@ The sample mean:

BN:XZ%ZXi

i=1
@ The sample median BN = X.

@ The trimmed-mean (the largest and smallest samples are first discarded and
the remaining N — 2 samples are averaged.)

Which one of these estimators, if any, is correct will depend on the criterion which
is selected.

(Department of Electrical an FaLL 2008 5/ 39



STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

Location Estimation in Gaussian Noise

Assume that Xi, X5, -+, Xy, are i.i.d. Gaussian with a constant but unknown
mean 3. The Maximum Likelihood estimate of location is the value 5 which
maximizes the likelihood function

—.

Il
-

f(X17X2,"' ;XN;ﬂ) = f(XI_/B)

e (Xi—B)*/20° (5)

Il
—

I
=
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) o T (X—B) /20
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¥
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ICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

The ML estimate of location is the value ﬁA which minimizes the least squares sum

N
By = arg mﬁin Z(X; — B)2. (6)

i=1

The value that minimizes the sum, results in the sample mean

. 1
BuL = N ;Xb (7)

Note that the sample mean is unbiased since E{BML} =(1/N) Z,N:l E{Xi} =5.
As a ML estimate, it is efficient having its variance, in (1), reach the Cramér-Rao
bound.
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

Location Estimation in Generalized Gaussian Noise

In the generalized Gaussian distribution case, the Maximum Likelihood estimate of
location is

N

H £ (Xi — B)
i—1

F( X0, Xo, -+ X B)

N
_ HCG_‘X"_MW/O
i=1
= CNe ZiLlX—Al'/o (8)

where C is a normalizing constant, and -y is the dispersion parameter.
Maximizing the likelihood function is equivalent to

N
AL = arg min > oIXi—a0. 9)
i=1

FALL 2008 19 / 39



STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

N
BML = arg mﬁin Z |X; — B
i=1

FicUrg: Cost functions for the observation samples
X1=-3,%=10,X3=1, X4 —1,Xs =6 for vy =0.5,1, and 2.
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

When the dispersion parameter is 1, the model is Laplacian and the optimal
estimator minimizes

B = arg m|nZ|X B (10)
i=1
The solution to the above is the sample median as it is shown next.
Define the cost function in (10) as L;(/3). For values of 3 in the interval
—00 < 3 < Xy, Li(B) is simplified to

Mz

N
Xy —B) = ZX(,-)—NB. (11)
i=1

i=1

This, as a direct consequence that in this interval, X(l) > 0.

GONZALO R. ARCE (Department of Electrical an
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

For N odd there is an integer k, such that the slopes over the intervals
(X(k=1)> X(k)] and (X(ky, X(k+1)], are negative and positive, respectively. From
(14), these two conditions are satisfied if both

N N
k < 5 and k > E — ].
hold. Both constraints are met when k = ¥
N
Bme = arg mﬁi}n Z |Xi — Bl
i=1
X, ni1 N odd
_ X
(X(%),X(%)} N even
— MEDIAN(X,, Xa, -, Xn). (15)
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ICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

Location Estimation in Stable Noise

Maximum likelihood estimation requires the knowledge of the density function.
Among the class of symmetric stable densities, only the Gaussian (« = 2) and
Cauchy (o = 1) distributions have closed-form expressions.

@ The only non-Gaussian distribution for which we have a closed form
expression is the Cauchy distribution.

@ ML estimates under the Cauchy model can be made tunnable acquiring
remarkable efficiency over the entire spectrum of stable distributions.
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

Given a set of i.i.d. samples X1, X, -+, Xy obeying the Cauchy distribution with
scaling factor k,

=S (16)

flx—pB)= ma

the location parameter 3 is to be estimated from the data samples as the value Bk
which maximizes the likelihood function

N

. i K\" 1
e L1069 = (0) Tl (07

i=1
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

This is equivalent to minimizing

N
Gk(B) = H[k2 + (X — B)?. (18)

Given k > 0, the ML location estimate is known as the sample myriad and is
given by

RD
x~
Il

N
arg mﬁin H (K + (X; — B)?) (19)

MYRIAD{/(, )(1,)(27 ce ,XN}.
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

The sample myriad involves the free parameter k (refered to as the linearity
parameter). The behavior of the myriad is markedly dependent on the value of k.

FIGURE: Myriad cost functions for the observation samples
X1 = —3,X2 = 10,X3 = 1,X4 - 1,X5 =6 for k = 20,2,02
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

LEAST LOGARITHMIC DEVIATION

The sample myriad minimizes

N
Gk(B) = H[k2 + (X — B)?].

Since the logarithm is a strictly monotonic function, then the sample myriad will
also minimize log Gk (03).

N
MYRIAD{k; X, -+ , Xy} = arg min > log [k + (X — B)?] . (20)
i=1
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ICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

GEOMETRICAL INTERPRETATION

The observations X;, X,---, Xy are placed along the real line. Next, a vertical
bar that runs horizontally through the real line is added. The length of the vertical
bar is equal to k. Each of the terms

(K + (Xi — B)?) (21)

in (20), represents the distance from point A, at the end of the vertical bar, to the
sample point X;.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A
T A
K
T
K
X | X
, N N
X X, X, B B X, Xg X, X X, X, X, B Xs X,
@ (b)
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STATISTICAL FOUNDATIONS OF FILTERING MAXIMUM LIKELIHOOD ESTIMATION

The sample myriad, Bk: indicates the position of the bar for which the product of
distances from point A to the samples X;, X5,---, Xy is minimum. Any other
value, such as x = [/, produces a higher product of distances.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A
T A
K
T
K
X | X
, N N
X5 X X, B B X X X, X5 X, X, X; B Xs X,
@ (b)

FIGURE: (a) The sample myriad, 3, minimizes the product of distances from point A to
all samples. (b) the myriad as k is reduced.
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MEDIAN AND WEIGHTED MEDIAN SMOOTHERS [AUUSTEITEyonIYIoi RSNl ysioit]

Weighted Median Smoothers

@ Running medians are temporally blind.

@ All observation samples are treated equally regardless of their location within
the observation window.

@ Better smoothers are obtained if weighting is allowed.

MEDIAN

¥(n)

F1GURE: The weighted median smoothing operation .

FALL 2008 28 / 98
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MEDIAN AND WEIGHTED MEDIAN SMOOTHERS [AUUSTEITEyonIYIoi RSNl ysioit]

Statistical Foundations

@ Although time—series, in general, exhibit temporal correlation, the
independent but not identically distributed model can be used to synthesize
the mutual correlation.

@ The estimate Y(n) can rely more on the sample X(n) than on the other
samples. X(n) is more reliable than X(n — 1) or X(n + 1), which in turn are
more reliable than X(n —2) or X(n+ 2), and so on.

@ By assigning different variances (reliabilities) to the independent but not
identically distributed location estimation model, the temporal correlation
used in time-series smoothing is synthesized.
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MEDIAN AND WEIGHTED MEDIAN § 'HER! ‘WEIGHTED MEDIAN SMOOTHERS

For the generalized Gaussian distribution, where the samples have a common
location parameter 3, but different scale parameter o;. The ML estimate of

location is
N

Gol() =Y ~5 1%~ . (©)

i=1
In the special case of the Gaussian distribution (p = 2), the ML estimate reduces
to the normalized weighted average

N
2 _ 2z Wi Xi

(7)
Y, W

N
A . 1
ﬂ:argm[}n E ;(X;fﬁ)
i=1 i

where W; = 1/0? > 0.
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MEDIAN AND WEIGHTED MEDIAN SMOOTHERS [AUUSTEITEyonIYIoi RSNl ysioit]

In the case of a Laplacian distribution (p = 1), the ML estimate minimizes

N

Gi(8) = >~ X~ . (8)

i=1

where W; 2 1/0; > 0. Gi(B) is piecewise linear and convex.
The value 8 minimizing (8) is one of the samples X1, Xz,..., Xy. The weighted
median output is defined as

N
Y(n) = argmin W;i| X; —
(n) gmi ; X — 3]
= MEDIAN[W1<>X1(I7), W2<>X2(n),~~, WNOXN(H)]

where W; > 0 and < is the replication operator defined as
w; times

—_——f
W, oXi = X;, Xi,---, Xi.

FALL 2008 31 /98



MEDIAN AND WEIGHTED MEDIAN SMOOTHERS [AUUSTEITEyonIYIoi RSNl ysioit]

Weighted Median Smoothing Computation

Given the weight vector W = (1, 2, 3, 2, 1). For X(n) = [12, 6,
4, 1, 9], the weighted median smoother output is

Y(n) = MEDIAN [ 1012, 206, 304, 201, 109 ]

= MEDIAN[12, 6, 6, 4, 4, 4,1, 1, 9] ©)
MEDIAN [1, 1, 4, 4, 4, 6, 6, 9, 12 ]
= 4

The standard median output for the given input is Y(n) = 6.
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MEDIAN AND WEIGHTED MEDIAN SMOOTHERS [AUUSTEITEyonIYIoi RSNl ysioit]

The Center Weighted Median Smoother

WM smoothers can emphasize or deemphasize specific input samples. The sample
most correlated with the desired estimate is the center observation sample. This
observation leads to the center weighted median (CWM) smoother:

Y(n) = MEDIAN[Xy, ..., Xc—1, WeOXe, Xeg1, -0, Xn),

where W, is an odd positive integer and ¢ = (N +1)/2 = Ny + 1 is the index of
the center sample.

When W, =1, we get a median smoother, and for W, > N, the CWM reduces to
an identity operation.
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MEDIAN AND WEIGHTED MEDIAN ‘WEIGHTED MEDIAN SMOOTHERS

input
n

weight We
@
T

0 50 100 150 200 250 300 350 400 450 500
timen

FIGURE: Effects of increasing the center weight of a CWM smoother of size N =9
operating on the voiced speech “a”.
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MEDIAN AND WEIGHTED MEDIAN SMOOTHER ‘WEIGHTED MEDIAN SMOOTHERS

The output of a CWM smoother is equivalent to computing
Y(n) = MEDIAN [X(k), )(C7 X(N+1—k)] s (14)

where k = (N+2— W,)/2for 1 < W, <N, and k =1 for W, > N.

Since X. = X(n), the output of the smoother is identical to the input as long as
X(n) lies in the interval [X(k)7X(N+1—k)] .

If Xe > X(ny1-k) the smoother outputs X(y1_k), guarding against a possible
aberrant data point being taken as the output. Similarly, the smoother’s output is
X« if the sample X(n) is smaller than this order statistic.

e DN S

X(l) X(k) X(N+1—k) X(N)

FIGURE: The center weighted median smoothing operation.
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MEDIAN AND WEIGHTED MEDIAN SMOOTHERS

‘WEIGHTED MEDIAN SMOOTHERS
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FIGURE: An example of the CWM smoother operating on a Laplacian distributed sequence

with unit variance. Shown are the input and output sequences as well as the trimming statistics

X(k) and X(N+17k)' N =25and k=T7.
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MEDIAN AND WEIGHTED MEDI ‘WEIGHTED MEDIAN SMOOTHERS

Application of CWM Smoother To Image Cleaning

T

FIGURE: Impulse noise cleaning with a 5 x 5 CWM smoother: (a) original, (b) image with salt
and pepper noise, (c) CWM smoother with W, = 15, (d) CWM smoother with W, = 5.
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MEDIAN AND WEIGHTED MEDIAN SMOOTHERS ‘WEIGHTED MEDIAN SMOOTHERS

F1GURE: (Enlarged) Noise-free image (left), 5 x 5 median smoother (center), and 5 x 5
mean smoother (right).
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PSSPV IRSIN(eIobyiIoi I RUNNING MYRIAD SMOOTHERS

Running Myriad Smoothers

Given an observation vector X(n) = [X1(n), Xa(n), ..., Xn(n)] and a fixed positive
(tunable) value of K, the running myriad smoother output at time n is computed
as

Yk(n) = MYRIADI[K; Xi1(n), X2(n), ..., Xn(n)]
N
= argﬁmin [T K+ (Xi(n) - )] (4)
i=1
N
= argﬁmin Z log [K? + (Xi(n) — B)] . (5)
i=1

The myriad Yk(n) is thus the value of § that minimizes the above cost function.

GONZALO R. ARCE (Department of Electrical an FALL 2008 15 / 68



PSSPV IRSIN(eIobyitoitl RUNNING MYRIAD SMOOTHERS

The definition of the sample myriad involves the free-tunable parameter K. This
parameter will be shown to play a critical role in characterizing the behavior of the
myriad.

FIGURE: Myriad cost functions for different values of k

ARCE (Department of Electrical an FALL 2008 16 / 68



RUNNING MYRIAD SMOOTHERS

PROPERTY (LINEAR PROPERTY)

Given a set of samples, X1, X, ..., Xy, the sample myriad Bk converges to the

sample average as K — oo. This is,

lim Bk = lim MYRIAD(K; Xy, ..., Xy)
K—o0 K—o00
1 N
= NZX,-. (6)
i=1
FALL 2008 17 / 68
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PUNGHIVNIRSIVIOTob NIl RUNNING MYRIAD SMOOTHERS

DEFINITION (SAMPLE MODE-MYRIAD)

Given a set of samples X;, Xo,..., Xy, the mode-myriad estimator, o, is defined
as

fo = Jim Bk, (10)

where B = MYRIAD(K; X1, X, ..., Xn).

PROPERTY (MODE PROPERTY)

The mode-myriad ﬁo is always equal to one of the most repeated values in the
sample. Furthermore,

N
fo=argmin [ X —X], (11)
XEM i1 Xi£X;

where M is the set of most repeated values.

B (Department of Electrical an FALL 2008 20 / 68



PSSPV IRSIN(eIobyitoitl RUNNING MYRIAD SMOOTHERS

EXAMPLE

Denoising of a very impulsive signal.

x10"

—
o o
0 4000 5000
b,

1000 2000 3000 4000 5000 0 1000 2000 3000 0 1000 2000 3000 4000 5000
(a) (b) ()
10 Lﬂ 10| 10
0 0 0
10 -10 10|
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
(d) (e) (®

FIGURE: Running smoothers in stable noise (o« = 0.2). All smoothers of size 121; (a)
original blocks signal, (b) corrupted signal with stable noise, (c) the output of the
running mean, (d) the running median, (e) the running FLOM smoother, and (f) the
running mode-myriad smoother.
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PSSPV IRSIN(eIobyitoitl RUNNING MYRIAD SMOOTHERS

Kz = 10K

FIGURE: The role of the linearity parameter when the myriad is looked as a maximum
likelihood estimator. When K is large, the generating density function is spread and the
data are visualized as well-behaved (the optimal estimator is the sample average). For
small values of K, the generating density becomes highly localized, and the data are
visualized as very impulsive (the optimal estimator is a cluster locator).

FALL 2008 26 / 68
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PSSPV IRSIN(eIobyitoitl RUNNING MYRIAD SMOOTHERS

Increased resistance Increased efficiency
MODE to outliers in Gaussian noise
“luster searcl MEAN
(Cluster searcher) small K K Jarge K

F1cURE: Functionality of the myriad as K is varied. Tuning the linearity parameter K
adapts the behavior of the myriad from impulse-resistant mode-type estimators (small
K) to the Gaussian-efficient sample mean (large K).

Empirical selection of K:

@ Linear type K =~ X(n) — X()
@ Mode type K ~ min;; |X; — X;]

FALL 2008 27 / 68



RUNNING MYRIAD SMOOTHERS

A

Sample Myriad (B«)

0

10" 10 o' 10

1
Linearity Parameter (K)

FIGURE: Values of the myriad as a function of K for the following data sets: (solid)
original data set = 0,1,3,6,7,8,9; (dash-dot) original set plus an additional observation
at 20; (dotted) additional observation at 100; (dashed) additional observations at 800,
-500, and 700.
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PUSSIEVIRSIN(eIob IOl OPTIMALITY OF THE SAMPLE MYRIAD

Optimality of the Sample Myriad

Optimality In The a-Stable Model

PROPOSITION

Let To (X1, X2,...,Xn) denote the maximum likelihood location estimator
derived from a symmetric a-stable distribution with characteristic exponent o and
dispersion . Then,

|im0 Ta’,y(Xl, X2, PN ,XN) = MYRIAD {0, Xl, Xz, ‘e ,XN} . (14)

v

The a-stable triplet of optimality points satisfied by the myriad:

da=2<— K=

da=1-K=vy
Qa=0-~K=0
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MYRIAD £ RS OPTIMALITY OF THE SAMPLE MYRIAD

PROPOSITION

Let o and v denote the characteristic exponent and dispersion parameter of a
symmetric a-stable distribution. Let K,(«,~) denote the optimal tuning value of
K in the sense that ﬁKo minimizes a given performance criterion (usually the
variance) among the class of sample myriads with non negative linearity

parameter. Then,
Ko(oz,’)/) = Ko(a, 1)'Y~ (15)

4

A simple empirical formula is

K(a) = ; (16)

FALL 2008 32 /68
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PUSSIENIRSIN(eIobyiIoil WEIGHTED MYRIAD SMOOTHERS

Weighted Myriad Smoothers

Given N observations { X}, and nonnegative weights {W; > 0} ., let the input
and weight vectors be defined as X 2 [X1,Xo,...,Xn]" and
w 2 [Wi, Wa, ..., Wn]T, respectively. For a given nominal scale factor K, the

underlying random variables are assumed to be independent and Cauchy

distributed with a common location parameter (3, but varying scale factors
{SN: Xi ~ Cauchy(3, S)):

1 S;
fX,, 3 9i) — — ) - Xi ) 17
x:(Xi: 8, Si) R 00 < Xi < 00 (17)
and where K
A
S = >0,i=12,...,N. 18
vw, ~ (e)
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DUSSIEVIRSIN(eIob IOl WEIGHTED MYRIAD SMOOTHERS

DEFINITION (WEIGHTED MYRIAD)

Let W = [W, W, ..., Wy] be a vector of nonnegative weights. Given K > 0, the
weighted myriad of order K for the data X1, Xo, ..., Xy is defined as

N

Bk = MYRIAD{K;Wio0X,..., WyoXy}
N
= arg minz log [K* + Wi(X; — B)?] , (22)
L=t

where W; o X; represents the weighting operation in (22). In some situations, the
following equivalent expression can be computationally more convenient

N
Bk = arg min H [K? + Wi(X; — B)?]. (23)
i=1

v
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MYRIAD SMOOTHERS ‘WEIGHTED MYRIAD SMOOTHER DESIGN
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DUNGHIVNIRESIVIOT i Sl WEIGHTED MYRIAD SMOOTHER DESIGN

FIGURE: ((c) smoothed with 5 x 5 center weighted median with
W, = 15(PSNR=37.48dB), (d) smoothed with 5 x 5 center weighted myriad with
W, = 10,000 and K = (X1 + X5)/2 (PSNR=39.98dB)
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‘WEIGHTED MYRIAD SMOOTHER DESIGN

@ ®)

F1GURE: Comparison of different filtering schemes (Enlarged). (a) Original Image, (b)
Image smoothed with a center weighted median (PSNR=37.48dB)
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DUNGHIVNIRESIVIOT i Sl WEIGHTED MYRIAD SMOOTHER DESIGN

(©) (d)

F1GURE: Comparison of different filtering schemes (Enlarged). (c) Image smoothed with
a 5 x 5 permutation weighted median (PSNR=35.55dB), (d) Image smoothed with the
center weighted myriad (PSNR=39.98dB).

. ARCE (Department of Electrical an FALL 2008 60 / 68



MYRIAD SMOOTHERS ‘WEIGHTED MYRIAD SMOOTHER DESIGN

FIGURE: Output of the Center weighted myriad smoother for different values of the
center weight W, (a) Original image, (b) 100 (PSNR=36.74dB)
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DUNGHIVNIRESIVIOT i Sl WEIGHTED MYRIAD SMOOTHER DESIGN

FIGURE: Output of the Center weighted myriad smoother for different values of the
center weight W, (c) 10,000 (PSNR=39.98dB), (d) 1,000,000 (PSNR=38.15dB).
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‘WEIGHTED MYRIAD SMOOTHER DESIGN

Myriadization

@ First, design a constrained linear smoother for Gaussian or noiseless
environments using FIR filter (smoother) design techniques.

@ Then, plug in these smoother coefficients into weighted myriad structure.
@ Choose the suitable K according to the impulsiveness of the environment.

9 Note that the smoother coefficients W; must be non-negative and satisfy the
normalization condition vazl W, =1

(Department of Electrical an FALL 2008 65 / 68



DUNGHIVNIRESIVIOT i Sl WEIGHTED MYRIAD SMOOTHER DESIGN

EXAMPLE
Robust Low Pass Filter Design

@ (h)

FIGURE: Myriadizing a linear low-pass smoother in an impulsive environment: (a) chirp
signal, (b) chirp in additive impulsive noise, (c) ideal (no noise) myriad smoother output
with K = oo, (e) K = 0.5, and (g) K = 0.2; Myriad smoother output in the presence of

noise with (d) K = oo, (f) K = 0.5, and (h) K = 0.2.

GONZALO R. ARCE (Department of Electrical an



AU NIVl WEIGHTED MYRIAD FILTER DESIGN

Example: Robust Band-Pass Filter Design

A
e ———

)

FIGURE: Myriadizing a linear band-pass filter in an impulsive environment: (a) chirp
signal, (b) ideal (no noise) myriad smoother output with K = oo, (c) K = 0.5, and (d)
K =0.2.
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(d)

FIGURE: Myriadizing a linear band-pass filter in an impulsive environment (continued):
(a) chirp in additive impulsive noise. Myriad filter output in the presence of noise with
(b) K =00, (¢) K=0.5, and (d) K =0.2
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Measurements corrupted by noise

Measurements corrupted by noise can be modeled as:
y = dx + z,

where z is a zero-mean additive white noise.

Under some characteristics of the noise:

Notably finite second order statistics or
bounded noise in the ¢ sense,

Having a measurement matrix ® that satisfies the RIP condition.

Then, there are algorithms to stably recover the sparse signals from the noisy
measurements.

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 4 /41



Algorithms to recover the sparse signal

e Basis Pursuit Denoising (BPD)

min ||x||1 subject to ||y — ®x|[> <,
xeR?

for some small € > 0, then ||x — X||2 < Cg, for some constant C.
o /{;-regularized least squares (¢;-LS)

1 )
min S{ly — ®x[l2 + Aflxs,

where X is a regularization parameter that balances the weight between the
data fidelity term and the ¢y regularization term.

o Greedy algorithms as

o Orthogonal matching pursuit (OMP) and Regularized OMP
o lterative hard thresholding (IHT)

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 5/ 41
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Impulsive Noise Effects

Amgiude

O
% Em wo s 86 000 My e T

min ||x||o subject to ||y — ®x||» < .
x€R"
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Impulsive Noise Effects

X — y=®x+w — X
\ “
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Traditional noise aware CS systems consider finite variance noise models
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|
¢y norm as data-fitting

@ Perform adequately under the assumption that the contaminating noise has
finite second order statistics.

@ Tends to be very sensitive to outliers or gross error present in the
measurements

Problem
How to address the CS reconstruction problem when the measurements are
corrupted by sparse or impulsive noise?
@ Impulsive noise has infinite or very large variance breaking the assumptions of
traditional LS-based recovery algorithms.

4

Strategy

Replace the commonly used ¢, norm by M-estimators as data fidelity functions

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 12 /41



£p estimator

n
&= argminz —5lyi —aff
pg

where y; are the observation samples.

Gonzalo R. Arce Robust Compressive Sensing
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Myriad estimator

A . 2 C_)?
a_argmoznz;bg[a +(yi —a)?]

i=

where y; are the observation samples.
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Lorentzian norm (LL, norm)

The cost function of the myriad estimator can be extended to define a robust
metric, the Lorentzian norm for vectors in R™

m U-2
lullia =Y tog (1425 ) 7> 0.ue R
i=1

@ Does not penalize large ’
deviations, leading to more
robust error metrics when
outliers are present. s

@ The robustness depends on
the scale parameter v \ J—

— L2yt
L2y=0.1
Huber, c=0.75

0 -8 -6 -4 -2 0 2 4 & 8 10

Figure: Comparison of the ¢; (black) norm, the Huber cost function
with ¢ = 0.75 in (magenta) and the LL, norm with v = 1 (blue) and
v=0.1 for the 1D case. The squared ¢> norm (red) is
plotted as reference.
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Comparison of the ¢; (black) norm, the Huber cost function with ¢ = 0.75 in
(magenta) and the Lorentzian norm with v =1 (blue) and v = 0.1 (green) for the

location estimation problem, with observation samples located in
x={-1,0,1,10}

"
—1
—LL2y=1
———LL2,y=0.1
Huber, c=0.75
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Lorentzian (Myriad) norm (LL;)

@ It is an everywhere continuous
function

@ It is convex near the origin

@ Large deviations are not heavily
penalized as in the case of ¢; or /5

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 21 /41



Robust Sparse Signal Reconstruction

Approaches based on replacing the £, norm by the robust metrics for the data
fidelity term.

1. ¢;-Based Methods
The ¢> norm is replaced by the ¢; norm in the data fitting term.

Constrained least absolute deviation (LAD) regression problem
min [ly = ®x[|z + 7]lx]lo.

Optimum under the ML assumption that the noise obeys a Laplacian distribution.

@ This problem is combinatorial and computationally expensive.

@ Relaxations to the ¢y constraint have been proposed.

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 22 /41



2. {p-Based Methods

If the corrupting noise has heavier tails than the Laplacian distribution, the ¢,
norm, with 0 < p < 1 can be used

Recovery optimization problem

min [y — &5 + 7.

@ This problem is optimal under the ML criteria for GGD noise.

@ |t is robust to very impulsive noise.

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 26 /41



4. Lorentzian Based Methods

Appropriate for many impulsive environments using the Lorentzian norm as a
fitting term.

Lorentzian-Based Basis Pursuit

Signal estimate based on the following non-convex problem:

min [|x||; subject to ||y — x|, < p.
x€ER"

Theorem (Upper bound for the reconstruction error)

Let @ be an m x n sensing matrix such that d»s < v/2 — 1. Then for any signal
xg € R" such that |supp(xg)| < s, and observation noise z with ||z[[r, 4 < p, the
solution to LBP, x*, obeys the following bound:

Ixo = x"[l2 < Csyv/m(er — 1),

where the constant C, depends only on dos.

Problem: Slow and complex to solve!
Robust Compressive Sensing August 9, 2016 28 /41



Lorentzian-Based lterative Hard Thresholding Algorithm
Ideal optimization problem:

min |ly — ®x|| 1, 4 subject to ||x|lo <'s
xeR"

Iterative algorithm:
X = H, (X(t) + pny® T Wi (dx) — y)) ,

where Hs(-) denotes the hard thresholding operator,

72

Wi i) =
t(l,l) ’Y2+(YI*¢,'TX(t))27

and ¢; denotes the i-th row on &.
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Numerical experiments

Comparison of the performance of the following 8 robust methods:

@ /1-based coordinate descent (¢1-CD)

@ /; least absolute deviation ¢;-LAD solved by ADMM
@ Lorentzian-based basis pursuit (LBP)
Lorentzian-based iterative hard thresholding (LITH)
Lorentzian-based coordinate descent (L-CD)

Robust lasso (R-Lasso)

Huber iterative hard thresholding (HIHT)

£1-LS method Traditional CS method for comparisons

Gonzalo R. Arce Robust Compressive Sensing August 9, 2016 33 /41
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Experimental Setup 1

Sparse signals of length n = 400, and sparsity s = 10.

Number of random measurements set to m = 100. Gaussian sensing matrices
a-stable noise models with o =1

100 repetitions of each experiment averaged

Measurements

9 T T T

Figure: Clean and contaminated reduced random projections
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Sparse signal reconstruction

uis o Lo e

o ol
o o}
0 o2

o
T

-0 -0z -0 02

-0 o] -0 -a|

-0 o] o 0|

e e T e e M R R L
(a) ¢ — ts(ser=66dB)  (b) €5 — D (SER=282dB)  (C) L-CD (SER=25.1 dB) (d) LBP (SER=24.0 dB)
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(e) LHT (sER=24.0 dB) (f) ReLasso (SER=8.1 dB) (g) ¢1-LAD (sER=16.9dB)  (h) Huber-IHT (SER=25.1 dB)
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Experimental Setup 3

Gonzalo R. Arce

Reconstruction of the Camera man image of size 256 x 256
Image sampled by a random DCT ensambled (50%)
Number of random measurements m = 32718

Sparsity representation basis: Daubechies db4 wavelet
a-stable noise with o =1

Scale parameter of the noise o = 0.01

Clean Measurements

Robust Compressive Sensing August 9, 2016

37 /41



(€) ReLasso (SER=18.1 dB) (d) Lep (sEr=20.7 ¢B)

Robust Compressive Sensing August 9, 2016 38 /41



(g) L-cp (sErR=19.2 dB) (h) HuberaHT (SER=19.4 dB)
Robust Compressive Sensing August 9, 2016 39 /41




Robust Sparse Reconstruction Summary

Method Optimization problem SER for SER for Time*
signal [dB] | image [dB] [s]

LBP Ty — ®x[lii,.~ + MxIt 24.0 20.7 10.58
LIHT lly — x|lir,, st X0 <s 24.0 19.4 2.13
R-Lasso %Hy7Cbxfr|\§+TXHx||1+T,Hr||1 8.1 18.1 7.23

L-CD lly — ®x| 115, + 7l 25.1 19.2 6522.7

£1-CD lly — ®x||1 + 7||x]|o 28.2 20.3 3814.2
£-LS Llly — ®x|13 + Allx[|y -6.6 7.3 4.73
£1-LAD lly — ®x]|1 + 7|2 16.9 19.6 7.05
HIHT M p(E2Y) st xllo < s 25.1 19.4 00.78

Table: Summary of eight sparse reconstruction methods.

*Execution time required to reconstruct the cameraman image.
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An introduction

maging] spectroscopy Irvohess the sensing of 2 brge amcent
of spattal information across 2 multtede of wavelengihs.
‘Comeentional approaches Lo hyperspeciral sersing san adp-
cent zores of Lhe underiying specirl scene and merge Lhe
resulis ko consdruct 2 speciral &ala oshe. Push broom spec-
trall imaging sensors, for instance, cplure a spectral oshe with
one loal plane amay [FPA) meassrement per sattl ine of the
scene [11 [21 Spectrometers based on oplical bandpess fikers
sequentially scan the scene by tuning the homdpass filbers in
steps. The dishantage of Sese lechniques 15 thal Lhey nequire
zanning 2 number of zones Bnearly In proportion 1o the
desired spatial and spectrad resolation. Thes artscle surveys

i iy Ml M| OGN 9.0 XTIV
Die o' pubiirsiioe: | Derwsber 307

compresstee coded apertere speciral Imagers, also mown as
oo gperture snapshod sectral Smagers (CASS) [11, 121 M1
which naturally embody the principles of compresshee sensing
[C=) [5], 151 The remarkable advaniage of CASS] 15 thal Lhe
entire data cube 15 sermed with Jist 2 few FPA measerements
and, In some cases, with 25 Bife 25 2 sSngle FPA shol.

INTRODUCTION

C5 dictates ol one @n recover spectral soenes from far fewer
messunements than that required by comventional Bnear scn-
ning speciral sensors. To make this possible, C5 relies on bwo
principles: sparsity, which characiertess the speciral soenes. of
interesd, and Incoherence, which shapes the sensing structure
151, [71- Sparsiy indicates that spectral images foend in malure
an be concisely represented In some Basds P owith just 2 small
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