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/ Introduction I \

e Most techniques for computing variances of parameter estimators

or for setting confidence intervals assume a large sample size
[Bhattacharya & Rao (1976)].

e In many signal processing problems large sample methods are
inapplicable [Fisher & Hall (1991)].

e The bootstrap was introduced [Efron (1979)] to calculate
confidence intervals for parameters when few data are available.

e The bootstrap has been shown to solve many other problems

which would be too complicated for traditional statistical analysis
[Hall (1992), Efron & Tibshirani (1993), Shao & Tu (1995)].
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/ Introduction (Cont’d) I \

e The bootstrap does with a computer what the experimenter

would do in practice, if it were possible.

1. The observations are randomly re-assigned, and the estimates

re-computed.
2. These assignments and re-computations are done many times

and treated as repeated experiments.

e In an era of exponentially increasing computational power,

computer-intensive methods such as the bootstrap are affordable.
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/ Introduction (Cont’d) I \

Applications of the bootstrap to real-life problems have been
reported in (see also special session at ICASSP-94 [64])

e radar signal processing [Nagaoka & Amai (1990,1991)],

e sonar signal processing [Krolik et al. (1991), Bohme & Maiwald
(1994), Reid et al. (1996)],

e geophysics [Fisher & Hall (1989,1990,1991), Tauxe et al. (1991)],

e biomedical engineering [Haynor & Woods (1989), Banga &
Ghorbel (1993)]

e control [Lai & Chen (1995)],
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/ Introduction (Cont’d) I \

e atmospheric environmental research [Hanna (1989)],

e vibration analysis [Zoubir & Bohme (1991,1995)].

e power systems [Herman (1996)],

e computer vision [Lange et al. (1998), Kanatani & Ohta (1998)]
e image analysis [Archer & Chan (1996)],

e nuclear technology [Yacout et al. (1996)],

e metrology [Ciarlini (1997), Cox et al. (1997)],

e financial engineering [Bhar & Chiarella (1996), Ankenbrand &
Tomassini (1996)].
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/ Introduction (Cont’d) I \

e Bootstrap methods are potentially superior to large sample

techniques for small sample sizes [Hall (1992)].

e A danger exists when applying bootstrap techniques in some
circumstances where standard approaches are judged

inappropriate and in such circumstances the bootstrap may also
fail [Freedman (1981)].

e Special care is therefore required when applying the bootstrap
in real-life situations [Young (1994)].
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/ Problem Statement I \

Let X = {X1,Xs,...,X,} be a random sample from a completely

unspecified distribution F'. Let 8 denote an unknown characteristic of

F', such as its mean or variance.

Find the distribution of é an estimator of 8, derived from
the sample X.

Possible solution: repeat the experiment a sufficient number of

times and approximate the distribution of 0 by the so obtained

empirical distribution.

Problem: may be inapplicable for cost reasons or because the

experimental conditions are not reproducible.
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‘Principle of the Bootstrap'

REAL WORLD BOOTSTRAP WORLD

Estimated
Probability

MAodeI Bootstrap Sample
F— X*=(X¥, X, ..., X¥)

Unknown
Probability
Model Observed Data

F——m= X=X, X, ey X%, )

é*:S(X *)

Bootstrap replication

b=s(x)

Statistic of interest

From [Efron & Tibshirani (1993)].
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The Non-Parametric Bootstrap' \

. Conduct the experiment to obtain the random sample X =

. Construct the empirical distribution F , which puts equal mass

. From the selected F, draw a sample X* = { X7, X3,..., X},

. Approximate the distribution of 0 by the distribution of 0

{X1,Xs,...,X,} and calculate the estimate 0 from X.

1/n at each observation X7 = 1, Xo = za,... , X,, = z,.

n

called the bootstrap (re)sample.

derived from X*.
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Bootstrap Data

\_

/ The Bootstrap Procedure'

Measured Data

T

Generate
EDF,

Fe (0)

Dy
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/ Example: Bias Estimation'

Consider the problem of estimating the variance of an unknown

Two different estimators can be used:
2

With the bootstrap we estimate the bias b(6%) = E6? — o2 by

A

Qg and E, is expectation w.r.t. bootstrap sampling.

distribution F), ,, based on the random sample X = {X1,... , X, }.

1 Z” 1 Z” 1 < 1 Z"
A2 —_— . —_ —_— . A2 —_— —_— . —_ —_— .
1=1 71=1 =1 71=1
It can be easily shown that
1
E62 =0° and E67 =(1— =)o?
n

E.6*2 — 62, where 62 is the maximum likelihood estimate of o2, i.e.,

<
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/ Example (Cont’d) I \

Step 0. Ezperiment. Collect the data into X = {Xq,..., X, }.

Compute the estimates 62 and 67
Step 1. Resampling. Draw a random sample of size n, with re-

placement, from X.
Step 2. Calculation of the bootstrap estimate. Calculate the

bootstrap estimates 6% and &;? from X* in the same way

62 and 67 were computed but with the resample X*.

Step 3. Repetition. Repeat Steps 1 and 2 to obtain a total of V

A k2 A k2 A k2 A k2
bootstrap estimates 6,,%,...,0, y and 6,5,... ,0; -

Step 4. Bias Estimation.  Estimate b(62) by b.(63%) =
1N S, 67267 and b(67) by b.(6%) = 1N T, 61262,

u,? 2

\_ /
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Frequency of occurence

We considered a sample of size n = 5 from the standard normal
distribution. With NV = 999 and 1000 Monte Carlo simulations, we
obtained the following histograms for b, (5:%) and b, (5;2).
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/ ‘Example: Variance Estimation' \

Consider the problem of finding the variance 09% of an estimator 6 of

6, based on the random sample X = {X;,..., X,,} from the unknown
distribution Fj.

2

e If tractable, one may derive an analytic expression for o 5

e Alternatively, one may use asymptotic arguments to compute an

estimate 62 for o2,

0 0

Problem: In many situations the conditions for the above are not
fulfilled.

Solution: The bootstrap provides a simple and accurate alternative

to approximate 093 by 6;2.

\_ /
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Example (Cont’d) I

<

Step 0. Experiment. Conduct the experiment and collect the
random data into the sample X = {Xq,..., X,,}.

Step 1. Resampling. Draw a random sample of size n, with re-

placement, from X.

Step 2. Calculation of the bootstrap estimate. Evaluate the boot-
strap estimate 0* from X* calculated in the same manner as

0 but with the resample X'* replacing X.
Step 3. Repetition. Repeat Steps 1 and 2 many times to obtain

a total of B bootstrap estimates 67, ... ,é*B. Typical values
for B are between 25 and 200 [Efron & Tibshirani (1993)].

\_
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/ Example (Cont’d) I \

Step 4. Estimation of the variance of f. Estimate the variance
09% of 0 by
2
B B
1 A 1 A
~2 * %
Teoor = 54 <9b EZ%) :
b=1 b=1

e Suppose F}, , is N'(10,25) and we wish to estimate o; based on a
random sample X of size n = 50.

e Following the above procedure with B = 25, a bootstrap estimate
of the variance of ji is found to be 62,,, = 0.49 as compared to

the true 0/% = 0.5.
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Bootstrap variance estimate

2(1)  ~%2(2) ~ %2(1000)
O, 50,

Q: 50 and B = 25. /
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/ Example: Confidence Interval for the Mean' \

Let X = {X4,...,X,} be from some unknown distribution F,, ,. We
wish to find an estimator and a 100(1 — «)% interval for p. Let

Xi1+...+ X,
- .

=

A confidence interval for p is found by determining the distribution

of [i, and finding [i1,, iy such that
Pr(ip <p < fiv)=1-a.

The distribution of i depends on the distribution of the X;’s, which
is unknown. If n is large, the distribution of /i could be approximated

by the normal distribution as per the central limit theorem. What if

Q 18 small? /
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/ Example (Cont’d) I \

Step 0. Ezxperiment. Conduct the experiment and collect
Xiq,...,X, into X. Suppose F,, is N(10,25) and X =
{—2.41,4.86,6.06,9.11,10.20, 12.81,13.17,14.10, 15.77, 15.79}

is of size n = 10. The mean of all values in X" is i = 9.95.

Step 1. Resampling. Draw a sample of 10 values, with replace-
ment, from X. One might obtain the bootstrap resample X* =
{9.11,9.11,6.06, 13.17,10.20, —2.41,4.86,12.81, —2.41,4.86}.
Note that some values from the original sample appear more
than once while others do not appear at all.

Step 2. Calculation of the bootstrap estimate. Calculate the

mean of X*. The mean of all 10 values in X* is i] = 6.54.

\_ /
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/ Example (Cont’d) I \

Step 3. Repetition. Repeat Steps 1 and 2 to obtain N bootstrap
estimates [7,... , . Let N = 1000.

Step 4. Approximation of the Distribution of 1. Sort the boot-
might get 3.48, 3.39, 4.46,... ,8.86, 8.88, 8.89,..., 10.07,
10.08, ... ,14.46, 14.53, 14.66.

Step 5. Confidence Interval. The 100(1 — «)% bootstrap con-
fidence interval is (ﬂ’("ql),ﬂ’("q2)), where ¢ = |Na/2| and
¢ = N —q +1. For a« = 0.05 and N = 1000, ¢1 = 25
and ¢o = 976, and the 95% confidence interval is found to be
(6.27,13.19) as compared to the theoretical (6.85,13.05).

\_ /
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/ Example (Cont’d) I

Density function
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the kernel probability density function obtained from 1000 Monte Carlo
simulations. The 95 % confidence interval is (-0.896,0.902) and
w0.886,0.887) based on the bootstrap and Monte Carlo, respectively.

Histogram of 1000 bootstrap estimates of the mean of the ¢4-distribution and
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/ Example (Cont’d) I \

e The procedure described above can be substantially improved

because the interval calculated is, in fact, an interval with

coverage less than the nominal value [Hall (1988)].

e Later, we shall discuss another way that will lead to a more

accurate confidence interval for the mean.

e The computational expense to calculate the confidence interval
for p is approximately IV times greater than the one needed to

compute [i.

e This is acceptable given the ever-increasing capabilities of

today’s computers.
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/ The Parametric Bootstrap' \

e Bootstrap sampling can be carried out parametrically.

e If one has partial knowledge of F', one may use F ; instead of F.

e Draw N samples of size n from the parametric estimate of F’

A

Fy — (x1,25,...,2,)

n

and proceed as before.

e When used in a parametric way, the bootstrap provides more

accurate answers, provided the model is correct.

\_ /
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/ Example: Confidence Interval for the Mean' \

Step 0. Experiment. Conduct the experiment and collect
Xq,...,X, into X. Suppose F,, is N(10,25) and X =
{—2.41,4.86,6.06,9.11,10.20, 12.81,13.17,14.10, 15.77,15.79}

is of size n = 10. The mean of all values in A is it = 9.95 and

the sample variance is 6% = 33.15.

Step 1. Resampling. Draw a sample of 10 wvalues, with
replacement, from Fj ;. We might obtain X* =
{7.45,0.36,10.67,11.60, 3.34, 16.80, 16.79,9.73,11.83,10.95 }.

Step 2. Calculation of the bootstrap estimate. Calculate the

mean of X*. The mean of all 10 values in X* is 47 = 9.95.
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/ Example (Cont’d) I \

Step 3. Repetition. Repeat Steps 1 and 2 to obtain N bootstrap
estimates [7,... , . Let N = 1000.

Step 4. Approximation of the Distribution of 1. Sort the boot-
strap estimates to obtain ﬂ’(kl) < ﬂ’('<2) <...< ,&’("N).

Step 5. Confidence Interval. The 100(1 — «)% bootstrap con-
fidence interval is (4., i(,,)), where ¢ = [Na/2| and
g = N —q1 +1. For a = 0.05 and N = 1000, ¢4 = 25
and ¢o = 976, and the 95% confidence interval is found to be
(6.01,13.87) as compared to the theoretical (6.85,13.05).
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4.86, 6.06, 9.11, 10.20, 12.81, 13.17, 14.10, 15.77, 15.79}, together with the

density function of a Gaussian variable with mean 10 and variance 2.5.
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/ An Example of Bootstrap Failure' \

Let X ~U(0,0) and X = {Xl,Xg, ..., Xn}. We wish to estimate 6
by 6 and its distribution E: (9) The Maximum Likelihood (ML)

estimator of # is given by =X (n)-

e To obtain an estimate of the density function of 0 we sample with

replacement from the data and each time estimate 0* from X*.

e Alternatively, we could sample from (0, 6) and estimate 6* from

X* (parametric bootstrap).

e We ran an example with 8§ =1, n = 50 and N = 1000. The ML
estimate of § was found to be = 0.9843.
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/ ‘An Example of Bootstrap Failure (Cont’d) I \

The non-parametric bootstrap shows that approximately 62% of the

values of 0* equal 0. In fact,
Pri0*=0)=1—(1—1/n)" — 1 —e ! ~ 0.632 as n — oo.

700 T T T T T T 120

600 -

N @
o o
o o

Frequency of occurrence
w
o
o

Frequency of occurrence

N
o
o

100 -

0 u l ! ! I

1
0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
theta hat star theta hat star

Non-parametric Bootstrap Parametric Bootstrap
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/ ‘The Dependent Data Bootstrap' \

e The assumption of i.i.d. data can break down in practice either

because the data is not independent or because it is not
identically distributed, or both.

e We can still invoke the bootstrap principle if we knew the
model that generated the data [Efron & Tibshirani (1993), Bose
(1988), Kreiss & Franke (1992), Paparoditis (1996), Zoubir
(1993)].

e For example, a way to relax the i.i.d. assumption is to assume
that the data is identically distributed but not independent such

as in autoregressive (AR) models.

\_ /
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/ ‘The Dependent Data Bootstrap (Cont’d)' \

e If no plausible model such as AR is available for the probability

mechanism generating stationary observations, we could make

the assumption of weak dependence.

e Strong mixing processes?, for example, satisty the weak

dependence condition.

e The mowving blocks bootstrap [Kiinsch (1989), Liu & Singh
(1992), Politis & Romano (1992,1994)] has been proposed for
bootstrapping weakly dependent data.

2Loosely speaking a process is strong mixing if observations far apart (in time)

Qe almost independent [Rosenblatt (1985)]. /
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/ ‘The Moving Blocks Bootstrap' \

QQQQQQQQQQQQ
||/|| ==|\,

o\

Schematic diagram of the moving blocks bootstrap for a stationary signal. The

red circles are the original signal. A bootstrap realisation of the signal (green
circles) is generated by choosing a block length (“3” in the diagram) and
Qmpling with replacement from all possible contiguous blocks of this Iength./
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Other Block Bootstrap Methods' \

The circular blocks bootstrap [Politis & Romano (1992), Shao &
Yu (1993)] allows blocks which start at the end of the data and

wrap around to the start.

The blocks of blocks bootstrap [Politis et al. (1992)] uses two
levels of blocking to estimate confidence bands for spectra and

Cross-spectra.

The stationary bootstrap [Politis & Romano (1994)] allows
blocks to be of random lengths instead of a fixed length.

A.M. Zoubir, Curtin University of Technology
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/‘ An Example: Variance Estimation in AR Models\l

We generate n observations x;,t =0,... ,n — 1, from

X t+a-Xi 1= 2y,

where Z; is white Gaussian noise with EZ; = 0, czz(u) = 0%6(u),
and a such that |a| < 1.

After de-trending the data, we fit the AR(1) model to the
observation x;. With ¢é,.(u) = 1/n ?:_()M_l T4Tty|y| fOT

0 < |ul <n—1, we calculate the Maximum Likelihood Estimate
(MLE) of a, & = —&,5(1)/é4,(0), which has approximate variance?
62 = (1—a?)/n.

funder some regularity conditions an asymptotic formula for &

2
a
in the non-Gaussian case and is a function of a and the variance and kurtosis of

Q [Porat & Friedlander (1989)]. /
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/ Example (Cont’d) I

<

Step 0. Experiment. Conduct the experiment and collect n ob-
servations x¢, t = 0,... ,n—1, from an auto-regressive process

of order one, X;.

Step 1. Calculation of the residuals. With the Maximum Likeli-
hood Estimate a of a, define the residuals Z; = x; + @ - v4_1
fort=1,2,... ,n—1.

Step 2. Resampling. Create a bootstrap sample x3,z7,... ,2) 4
by sampling Z27,25,...,2% ;, with replacement, from the
residuals 27, 22,...,2,—1, then letting x5 = zo, and zf =
—axi +z2;,t=12,... , n—1.

\_

/
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/ Example (Cont’d) I

<

Step 3. Calculation of the bootstrap estimate. After centring the

*

*_1, obtain a*, using the above for-

time series x(,,T1,... ,&

*

mulae but based on x§,x7,...,z) _1.

Step 4. Repetition. Repeat steps 2-3 a large number of times,

N = 1000, say, to obtain aj,as,... ,an.
Step 5. Variance estimation. From aj,as, ... , a5, approximate

the variance of a by

o1 NA 1
O s PICES DILI

1=1

\_
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Density function

1 1 L
-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
Bootstrap estimates

Histogram of aj, as, ... ,ajgoo for a = —0.6, n = 128 and Z; Gaussian. The
MLE for a was a = —0.6351 and 65 = 0.0707. The bootstrap estimate was
o = 0.0712 as compared to 653 = 0.0694 based on 1000 Monte Carlo

Qmulations.

/ Example (Cont’d) I \

/
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4 Outline} A

e Principle of the Bootstrap

— The Dependent Data Bootstrap
— An Example: Variance Estimation for Autoregressive

Parameter Estimators

e | The Principle of Pivoting

— An Example: Confidence Interval for the Mean
e Variance Stabilisation

— Examples

1. Correlation Coeflicient

2. Coherence Gain for Engine Knock Data

\_ /
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/ The Principle of Pivoting' \

e A statistic T'(X,#) is called pivotal if it possesses a fixed
probability distribution independent of 8 [Cramér (1967),
Lehmann (1986)].

e Bootstrap confidence intervals or tests have excellent properties

even for relatively low fixed resample number [Hall (1992)].

e For example, one can show that the coverage error in confidence
interval estimation with the bootstrap is O,(n~ ') as compared to

O,(n~'/2?) when using the normal approximation.

e The accuracy claimed holds whenever the statistic is
asymptotically pivotal [Hall & Titterington (1989), Hall (1992)].

\_ /
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‘ Outline I

e Principle of the Bootstrap
— The Dependent Data Bootstrap

— An Example: Variance Estimation for Autoregressive
Parameter Estimators

e The Principle of Pivoting
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e Variance Stabilisation

— Examples
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2. Coherence Gain for Engine Knock Data
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/ ‘An Example: Confidence Interval Estimation' \

We consider the construction of a confidence interval for the mean.

Let X ={X4,...,X,} be a random sample from some unknown
Fly .o We wish to find an estimator of px with a 100(1 — )%

confidence interval.

Let fix and 6% be the sample mean and the sample variance of X,

respectively. Alternatively to the previous example, we will base our

method for finding a confidence interval for ux on the statistic
S fix — pix

)LLY A 9
o

where ¢ is the standard deviation of [fix. The statistic has

asymptotically for large n a distribution free of unknown parameters.

/
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/ Example (Cont’d) I \

Step 0. Experiment. Conduct the experiment and collect the

random data into the sample X = {X1, Xo,..., X, }.
Step 1. Parameter estimation. Based on X', calculate i x and its

standard deviation &, using a nested bootstrap.
Step 2. Resampling. Draw a random sample, X'* of n values,

with replacement, from X.
Step 3. Calculation of the pivotal statistic. Calculate the mean

of all values in X* and using a nested bootstrap, calculate 6*.

Then, form

\_ /
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Example (Cont’d) I \

Step 4. Repetition. Repeat Steps 2-3 many times to obtain a
Step 5. Ranking Sort the bootstrap estimates to obtain /i3, (1) <

Step 6 Conﬁdence §nterval If (,uY (Ql)”LLY (2 )) is an interval

total of N bootstrap estimates fiy ,... , iy y-

iy <2> LS

containing (1 — a)N of the means (5, where ¢4 = |Na/2]
and g0 = N — ¢1 + 1, then

(lx — Glly (4p)s X — Olly, (4)))

is a 100(1 — )% confidence interval for px.

Such
1987

N

an interval is known as a percentile-t confidence interval [Efron

), Hall (1988)]. /
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/ Example (Cont’d) I \

For the same random sample X as before, we obtained the confidence
interval (3.54,13.94) as compared to (6.01,13.87).

e This interval is larger than the one obtained earlier and enforces
the statement that the interval obtained there has coverage less
than the nominal 95%.

e It also yields better results than an interval derived using the
assumption that gy is N (0,1)- or the (better) approximation
that iy is t,,_q-distributed.

e The interval obtained here accounts for skewness in the

underlying population or other errors [Hall (1988,1992), Efron &

K Tibshirani (1993), Zoubir (1993)]. /
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— The Dependent Data Bootstrap

— An Example: Variance Estimation for Autoregressive
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e | Variance Stabilisation

— Examples
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/ ‘ Variance Stabilisation I

6— 0

%

T =

The percentile-t method is particularly applicable to location
statistics, such as the sample mean, sample median, etc. [Efron &
Tibshirani (1993)]. However, for more general statistics, it may not
be accurate.

varying lengths and end points.

Solution: Pivoting often does not hold unless an appropriate

variance stabilising transformation is applied first. How do we

(automatz’cally” get a variance stabilising transformation?

To ensure pivoting, usually the statistic is “studentised”, i.e., we form

Problem: Studentising results in confidence intervals with erratically

<

/
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-

Variance Stabilisation (Cont’d)'

<

Step 1. Estimation of the variance stabilising transformation.

(a) Generate Bj bootstrap samples X" from X and for each

calculate the value of the statistic é;", 1 =1,...,B;. For

example B; = 100.

(b) Generate Bs bootstrap samples from X, i = 1,..., By,
and calculate 672, a bootstrap estimate for the variance of
0¥, i=1,...,B;. For example By = 25.

(c) Estimate the variance function ((#) by smoothing the val-
ues of 52 against GA;‘, using, for example, a fixed-span 50%
“running lines” smoother [Hastie & Tibshirani (1990)].

\_

/
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/ Variance Stabilisation (Cont’d)' \

Step 1. Estimation of the variance stabilising transformation.

A

(d) Estimate the variance stabilising transformation h(6) from
.
h6) = [ ()2

Step 2. Bootstrap quantile estimation. Generate Bz bootstrap

samples and compute 01* and h(éz*) for each sample ¢. Approx-
imate the distribution of h(6) — h(6) by that of h(6*) — h(6).

\_ /
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‘ Outline I

e Principle of the Bootstrap
— The Dependent Data Bootstrap

— An Example: Variance Estimation for Autoregressive
Parameter Estimators

e The Principle of Pivoting
— An Example: Confidence Interval for the Mean

e Variance Stabilisation

— Examples
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2. Coherence Gain for Engine Knock Data
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/ ‘Example: Correlation coefﬁcient' \

Let 6 = o be the correlation coefficient of two unknown populations,

and let ¢ and 62 be estimates of p and the variance of g, respectively,
based on X ={X;1,... , X, }and Y = {Y3,... .Y, }.

Let X* and Y* be resamples, drawn with replacement from X and ),

respectively, and let 9* and 6*2 be bootstrap versions of ¢ and 62.

By repeated resampling from X and ) we compute §, and t,, such
that with 0 < a < 1

0%

Pr((0" = 0)/6" < 80| X,Y) =2 =Pr((" = 8)/6" > ia| X,7)

The confidence interval (percentile-t) for g is given by

I(X,Y) = (6 — 6ta, 06— G5a) -

\_ /
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/ Example: Correlation coefficient (Cont’d)' \

There exists a transformation called Fisher’s z-transform [Fisher
(1921), Anderson (1984)], which is stabilising and normalising:

|
r'_
V)
=
of
—
s
|
|
[u—
@)
aQ

0

We could first find a confidence interval for &€ = tanh™* p and then
transform the endpoints back with the inverse transformation
o = tanh £ to obtain a confidence interval for p.

For X and Y bivariate normal (g ~ N (£,1/(n — 3))), a 95%, for
example, confidence interval for p is obtained from

(tanh(—1.96/v/n — 3 + §) , tanh(1.96/v/n — 3 + §)) .

\_ /
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/ Example: Correlation coefficient (Cont’d)' \

Let X =21 +W and Y = Z5 + W, where Z1, Z5 and W are pairwise

1.1.d. Then, pxyv = 0.5. We drew n = 15 realisations z1 ;, 22 ; and w,

from the normal distribution and calculated x;,y;, ¢ =1, ... ,15.

e Assuming a normal distribution we found oxy = 0.36 and the
95% confidence interval (—0.18,0.74) for ox y.

e using the bootstrap percentile-t method, we found with
N = 1000 the 95% confidence interval (—0.05,1.44).

e Using Fisher’s z-transform and the bootstrap (without assuming

bivariate normality), a confidence interval was found to be
(—0.28,0.93).

Qhe interval found using the percentile-t method is over-covering /
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0.6

0.5F

Standard deviation
o o
w IS
T

I
N
T

0.11

Bootstrap estimates of the standard deviation of Bs = 1000 (bootstrap)

estimates of the correlation coefficient before variance stabilisation.

\_

/ Example: Correlation coefficient (Cont’d)' \

/
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7

ol—x | | | | | | | |
0 0.1 0.2 0.3 0.4 Q.S 0.6 0.7 0.8 0.9 1
0*

Variance stabilising transformation for the correlation coefficient estimated

\_

/ Example: Correlation coefficient (Cont’d)' \

using B1 = 100 and By = 25. The solid line is a plot of Fisher’s z-transform.

/
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/ Example: Correlation coefficient (Cont’d)' \

18

16

14}

= =
o N
T T

Standard deviation
[e0]
T .
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ERE N ;¢';‘:9a‘ttf;"§‘z£§??}a"x-ﬁ AR ML

| | | | |
0 1 2 4 5 6 7

® h(0%)

Bootstrap estimates of the standard deviation of Bs = 1000 (new bootstrap)
estimates of the correlation coefficient after variance stabilisation, obtained

through bootstrap. The confidence interval found was (0.06,0.97).

\_ /
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/ Example: Correlation coefficient (Cont’d)' \

3.5

3

251

2k

151

Standard deviation

1+

0.5F

1
15 2

Bootstrap estimates of the standard deviation of Bs = 1000 (bootstrap)
estimates of the correlation coefficient after applying Fisher’s variance

stabilising transformation tanh™'.

\_ /
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— The Dependent Data Bootstrap

— An Example: Variance Estimation for Autoregressive
Parameter Estimators

e The Principle of Pivoting
— An Example: Confidence Interval for the Mean

e Variance Stabilisation

— Examples
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/ ‘Example: Coherence (Gain for Knock Data' \
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vibration sensors distributed on the block of a Volkswagen Passat four-cylinder

Qgine with 1.81, 79 kW and 10:1 compression ratio. /
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/ Coherence Gain for Knock Data (Cont’d) \

Z; = g1,t

g2t

Yy

Z;: vector of vibration signals, observed;
S¢: cylinder pressure signal, observed;
g1.+: prediction filter impulse response, unknown;

g2 +: prediction filter impulse response, unknown;

K&,t: prediction error, & = S; — Sz-,t .2 = 1,2, unknown. /
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/ ‘Coherence Gain for Knock Data (Cont’d) I \

The closeness to zero of 0(w) = R%,(w) — R (w), the coherence

gain explained by the sensor with output signal Yy, is an irrele-

vancy measure of this sensor among the remaining sensors.

This suggests to
test H:R%,(w) — R%y(w) < 6p(w)
against K:R%,(w) — Réy(w) > Op(w), 0<bhw) <1.

Problem: Distribution and variance stabilisation for the test
statistic T'(w) = (A(w) — O (w)) /6 (w), with O(w) = RZ,(w) — R+ (w),

are unknown.

\_ /
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/ Example (Cont’d) I

x10-3
2.2

1.8 - e |

16 e .
1.4-

1.2+

0.8+

Standard deviation

0.6+

0.4 ST T : i

0.2
0

Standard deviation of bootstrap estimates at one mode frequency without
Q\riance stabilisation. Herein, f(w) = R%,(w) — R%y (w).

<

/
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/ Example (Cont’d) I

0 1 2 3 4 5 6 7
x10-3

Estimated variance stabilising transformation. The transformation was found

using B1 = 200, Bo = 25 and a fixed-span running lines smoother with span

<

of

/
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/ Example (Cont’d) I \

1.8-

1.6+

1.4

Standard deviation

0.6

0.2
0

Q‘ter variance stabilisation.

3

h(S")

Standard deviation of (new) bootstrap estimates 8* (w) at one mode frequency

/
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4 Outline} A

e | Hypothesis Testing with the Bootstrap

— An Example: Testing the Frequency Response for Zero

e Signal Detection

— Examples
1. Bootstrap Matched-Filter

2. Detection of a Non-Gaussian Signal at Multiple Sensors

e Model Selection
— Linear Models

\_ /
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/ Hypothesis Testing with the Bootstrap' \

Consider a random sample X = {X1,..., X,,} observed from an

unspecified probability distribution F'. Let 6 be an unknown

parameter of F'.

We wish to test the hypothesis
H:60 <6, against K:0> 6,

where 6g is some known constant. Let 0 be an estimator of 8 and &2

an estimator of the variance o2 of 0.

Define the statistic

_ ' Y,
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‘Hypothesis Testing (Cont’d) I

<

Step 1. Draw X'*, with replacement, from X.

Step 2. Calculate

where 6* and 6* are versions of  and & computed from AX'*.
Step 3. Repeat Steps 1 and 2 to obtain Tf‘, e ,Tj’\‘,

Step 4. Rank Tl*, ,Tj{, into 7%, < --- < T<*N). Reject H if

(1) =
T > T(*q), where ¢ = |[(N +1)(1 — «a)].

\_

/
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/ ‘Hypothesis Testing (Cont’d) I \

For a double-sided alternative we would test

H:0 =26, against K:0#6,,
where 6, is some known constant. The statistic used is given by

. 6— 0
Td:| _ O'.

o

We would proceed as before and rank the bootstrap statistics

T;,p . ,TJ,N into T;(l) <. < T; (N): Then, we would reject H at
level o if Ty > Tj(q), where ¢ = |[(N +1)(1 — «a)].

\_ /
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/ Hypothesis Testing: Variance Estlmatlonl

If an estimator 62 is unavailable, use the bootstrap Given

A

replications, and calculate

1 B- 1 B-
Ax2 E : ) % E :A**
T By~ 1 b=1 <9b B b=1 " )

2

91, ... ,0%, , we estimate the variance 62 of 0 by
1 & P8
~9 o Ax L A
e G )
b=1 b=1

In the case of 6*2, the procedure involves two nested levels of
resampling. For each resample &7, b =1,... , By, we draw resamples
Xr*, b=1,..., Bg, evaluate 0;* from each resample to obtain By

/
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/ ‘Variance Estimation (Cont’d) I \

The jackknife can be thought of as drawing n samples of size n — 1

each without replacement from the original sample of size n [Miller

(1974)].

The jackknife is based on the sample delete-one observation at a
time, X = {X1, X9, ..., X;_1,Xit1,..., X}, i=1,2,... ,n, called
jackknife sample. For each ith jackknife sample, we calculate the ith

jackknife estimate 0() of 0,1=1,...,n and compute
R n—1
0J2ACK n Z(e()_ze()> )
1=1

which is less expensive than the bootstrap if n is less than the

Qumber of replicates used by the bootstrap for standard deviation. /
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4 Outline} A

e Hypothesis Testing with the Bootstrap

— | An Example: Testing the Frequency Response for Zero

e Signal Detection

— Examples
1. Bootstrap Matched-Filter

2. Detection of a Non-Gaussian Signal at Multiple Sensors

e Model Selection
— Linear Models
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/‘ An Example: Testing the Frequency Response I\

() Y&

A —

2) _,

St: . gt [ O = Ly
s —

S;: r vector-valued stationary signal, observed;
Zy:  output signal, observed;
g;: filter impulse response, unknown;

E:: mnoise, unknown, & and S; independent for t =0, +1,+2,....

L = Z gfLSt—u + &,

uUu=——0

Qroblem: which element G;(w), 1 <[ < r, is zero at a given w? /
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/ Example (Cont’d) I \

Let G(w) = (GW(w),Gy(w))". Given S; and Z; for n independent
observations of length 7" each, we wish to test

H:Gi(w) =0 (GY(w) unspecified) against K : Gj(w) #0.

We compute the frequency data dg(w) = (dg, (w),... ,ds, (w)),
ds,(w) = (ds,(w,1),... ,dg,(w,n)), I =1,...,r,

dz(w) = (dz(w,1),...,dz(w,n)), with

dz(w,1) = 31:_01 w(t/T) - Zy ;e 7%t i=1,...,n, and consider the
complex regression

dz(w) =ds(w)G(w) + dg(w) .
Let the Least-Squares Estimate (LSE) of G(w) be

K G(w) = (ds(w)Tds(w)) H(ds(w)Tdz(w)). /
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/ Example (Cont’d) I \

Conventional techniques assume T large so that dg(w) becomes

complex Gaussian [Brillinger (1981)]. Under this condition and H,

the statistic

. dz(w)—d GO (w) |2 — || dz(w) — ds(w)G(w) |2

P(w) = (n— 1) | dz(w) — dso (W) GV (w) |7 — || Z(W)2 (W)G(w) |
I dz(w) = ds(w)G(w) |

is Fy 9(p—p)-distributed, where

doo (w) = (ds, (@), - .., ds,_; (W), dsyy, (W), -, ds, (W)’
is obtained from dg(w) = (dy) (w),dg, (w)) by deleting the lth vector
ds, (w), and G (w) = (dgw (@) dgo) (w)) ™ (dgw (W) T d 7 (w))

[Shumway (1983)].
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Example (Cont’d) I

<

Step 0. Experiment. Conduct the experiment and calculate
ds(w,1),...,ds(w,n), and dz(w,1),...,dz(w,n).

Step 1. Resampling.  Conduct two totally independent re-

sampling operations in which {d¢(w,1),..., d&(w,n)} is
drawn, with replacement, from {dg(w,1),...,dgs(w,n)},
where dg(w, i) = (dg, (w,7),...,ds (w,7)), 2 =1,... ,n, and
a resample {d;}(w, 1),..., d (w,n)} is drawn, with replace-
ment, from {dgs(w,1),...,ds(w,n)}, collected into the vector

ds(w) = (dg(w,1),...,ds(w,n))’, so that

ds(w) = dz(w) — dg(w)G(w).

\_
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Example (Cont’d) I

<

Step 2. Generation of bootstrap data. Centre the frequency data

resamples and compute

dy(w) = d;(w)G(w) + dg(w).
The joint distribution of {(d¢(w,?),d%(w,i)),1 < i <
n}, conditional on X(w) = {(ds(w,1),dz(w,1)),... |,

(ds(w,n),dz(w,n))} is the bootstrap estimate of the uncon-
ditional joint distribution of X' (w).

Step 3. Calculation of bootstrap estimates. With the new d7, (w)

and d*(w), calculate the LSE G*(w), using the resamples
d% (w) and d}(w), replacing dz(w) and dg(w), respectively.

\_

/
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/ Example (Cont’d) I \

Step 4. Calculation of the bootstrap statistic. Calculate the
statistic, replacing ds(w), dyo) (w), dz(w), G(w), and GO (w)
by their bootstrap counterparts to yield 7*(w).

Step 5. Repetition. Repeat Steps 1-4 a large number of times,
say N, to obtain T%(w), ..., T5 (w).

Step 6. Distribution estimation. Approximate the distribution
of T'(w) by the distribution of T*(w) obtained.

An alternative bootstrap approach to the one described here can be

obtained by expressing T’ (w) using multiple coherences |Zoubir
(1993,1994), Zoubir & Boashash (1998)].

\_ /
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/ Example (Cont’d) I \

Let n = 20 be independent records of S; with » = 5 and let

K
Sl,t = ZAk’l COS((,ukt—I—(I)k,l) —|-Ul,t, [=1,....,5,
k=1
where Ay ; and ®f; are mutually independent random amplitudes
and phases, respectively, w; are arbitrary resonance frequencies for

k=1,...,K and U;; is a white noise process, [ =1,...,r.

With K =4 and T = 128, we generated data for ® and A from a
uniform distribution on the interval [0, 27) and [0, 1), respectively.

We selected f; = 0.1, fo = 0.2, f3 = 0.3 and f4 = 0.4, where
fr =wi/2m, k=1,...,4. The added noise was uniformly distributed.

\_ /
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/ Example (Cont’d) I \

70

60

Magnitude [dB]
S (o))
o o
T

w
o
T

20

10
0

1 1 1 1 1 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalised frequency

Spectral estimate of Sy 4, [ =1,...,r, ds,(w)”ds,(w)/n, obtained by

Q/eraging n = 20 periodograms. /
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/ Example (Cont’d) I \

We generated bandstop filters (FIR filters with 256 coefficients) with

bands centred about the four resonance frequencies f1, f2, f3 and f4.

20 T T T T T T T T

Magnitude [dB]

1 1 1 1 1 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalised frequency

Frequency response of the first channel, G1(w), obtained using an FIR filter

Kwith 256 coefficients. /
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/ Example (Cont’d) I \

We filtered S; and added independent uniformly distributed noise &;
to generate Z; (SNR = 5 dB with respect to the component S ¢,
l=1,...,r,t=0,...,T — 1, with highest power).

100

90

80

701

Magnitude [dB]

60

50

40 Il Il Il Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalised frequency

Qpectral estimate of Z;, dz(w)"”dz(w)/n, with n = 20. /
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/ Example (Cont’d) I \

We selected arbitrarily Gj(w), I =1,...,r, and tested H.

0.8

0.7r

0.6

Density function
o <} o
w ESN [6)]

T

o
N

o
[

O 4 1 1 ———
-8 -6 -4 -2 0 2 4
Bootstrap statistic

Histogram of 1000 bootstrap values of the statistic 7" (w) = (*(w) — 6(w))/

6" (w) at a frequency bin where H: G2(w) = 0 retained. The solid line
Qpresents a kernel density estimate using 1000 Monte Carlo simulations. /
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/ ‘Regression Analysis (Cont’d) I

0.8

0.7

0.6

Density function
o o o
w B (6]

T T

o
N

o
[N

| Ao

-8 -6 -4 -2 0 2 4
Bootstrap statistic

Histogram of 1000 bootstrap values of the statistic

T*(w) = (6*(w) — O(w)) /6™ (w) at a frequency bin where the hypothesis

H: Gi(w) = 0 was retained. The solid line represents a kernel density
Qtimate using 1000 Monte Carlo simulations.

<

/
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4 Outline} A

e Hypothesis Testing with the Bootstrap

— An Example: Testing the Frequency Response for Zero

e | Signal Detection

— Examples
1. Bootstrap Matched-Filter

2. Detection of a Non-Gaussian Signal at Multiple Sensors

e Model Selection
— Linear Models

\_ /
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\_

‘ Signal Detection I \

Detection of signals in interference is a key area in signal
processing applications such as radar, sonar, and

telecommunications.

Detection theory is well established when the interference is

(Gaussian.

In many applications such as high-resolution radar and radar at

low grazing angles interference such as clutter is non-Gaussian.

Existing methods for the detection of signals in non-Gaussian

interference are often cumbersome and/or non-optimal

/
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/ ‘The Signal Detection Problem'

Noise W
X=0s+W .
» Receiver
. . LK
— T(X) > T Z A 1.H

Receiver Structure

A.M. Zoubir, Curtin University of Technology
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/ ‘Signal Detection with the Matched Filter' \
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Detection probability

\_

/ Performance of the Matched Filter. \
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/Signal Detection with the CFAR Matched Filter \I

s’'\/s's
— P, X
T —> 2 A
—> I -P, —>]|-|]° va
1/(n—1)
T s'P.xVo2s's . (9 s’s)
VX' (I—-Ps)x/(n—1)02 " a

\_ /
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\_

Detection probability
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/ ‘Performance of the CFAR Matched Filter. \

T T T T T T

N=e /=21
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Voltage signal-to—noise ratio
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/ Limitations of the Matched Filter. \

e The matched filter and the CFAR matched filter are designed

(and optimal) for Gaussian interference.

e Although they show high probability of detection in the
non-Gaussian case, they are unable to maintain the preset level of

significance for small sample sizes.

e The matched filter fails in the case where the interference/noise

is non-Gaussian and the data size is small.

e The goal is to develop techniques which require little in the way

of modelling and assumptions.

\_ /
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‘ Outline I

e Hypothesis Testing with the Bootstrap

— An Example: Testing the Frequency Response for Zero

e Signal Detection

— Examples

1.

2. Detection of a Non-Gaussian Signal at Multiple Sensors

Bootstrap Matched-Filter

e Model Selection
— Linear Models

<
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/ ‘The Signal Detection Problem' \

Noise W

Signal s X=0s+W
+ =

Receiver

— T(X) — T'= A h

Receiver Structure

\_ /
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/ The Bootstrap Matched Filter'

<

Step 0. Experiment. Run the experiment and collect the data

.CCt,t:O,...,’n—l.

Step 1. Estimation. Compute the LSE 0 of 0, 045, and

0— 0

A

96

T =

6=0

Step 2. Resampling. Compute the residuals
?Dt:.?ft—éSt, t:O,...,’I’L—l,

and after centering, resample the residuals, assumed to be

1.i.d., to obtain wy,t=0,... ,n— 1.

\_

/
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/ The Bootstrap Matched Filter (Cont’d) I \

Step 3. Bootstrap Test Statistic. Compute new measurements

xfzést—I—w,’f, t=20,...,n—1,
the LSE 0* based on the resamples xy, t = 0,. — 1, and
.. 0 —40
T* = ——.
7.

Step 4. Repetition. Repeat Steps 2 and 3 a large number of times
to obtain Tl*, . ,Tj{f

Step 5. Bootstrap Test. Sort T%, .. T* to obtain T' (1) <

(

(n- Reject H if 7> T*), where ¢ = | (1 — a)(N +1)].

/
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N(0,1), SNR=7 dB

/ ‘Simulation Results (Gaussian Case) I

Let s; = sin(27t/6), n = 10, N = 999 (25 for variance estimation),
a = 5%, and the number of independent runs be 5,000.

Detector P; (%] Py %)
Matched Filter (MF) 5 99
CFAR MF D 98
Boot. (¢ known) 4 99
5 98

K Boot. (o unknown)

<
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/ Simulation Results (Non-Gaussian Case) \

Let s; = sin(27t/6), n = 10, N = 999 (25 for variance estimation),
a = 5%, and the number of independent runs be 5,000.

Wy ~ S0 aiN (i, 02) with a = (0.5,0.1,0.2,0.2),

1= (—0.1,0.2,0.5,1), o = (0.25,0.4,0.9,1.6), and SNR = -6 dB
Detector be (%] Py [%]
Matched Filter (MF) 8 83
CFAR MF 7 77
Boot. (¢ known) 5 7
7

K Boot. (¢ unknown) 79 /
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/ Interpretation of the Results' \

e The bootstrap is able to maintain a constant false alarm while

achieving a reasonably high detection power.

e These results can be improved in several ways, and the methods

extended to the correlated data case.

e The bootstrap is not proposed as an alternative to existing
non-parametric/parametric signal detection schemes in the

non-Gaussian interference case.

e The examples suffice to show the power of the bootstrap in signal
detection when little is known about the distribution of the

interference.

\_ /
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4 Outline} A

e Hypothesis Testing with the Bootstrap

— An Example: Testing the Frequency Response for Zero

e Signal Detection

— Examples

1. Bootstrap Matched-Filter
2. | Detection of a Non-Gaussian Signal at Multiple Sensors

e Model Selection
— Linear Models

\_ /
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Two Sensors

(Tugnait (1993), Ong et al. (1997)].

Source/’ \‘
Noisy System !

\_

/Detection of a Non-Gaussian Signal Common to \

Problem: Detection of a non-Gaussian signal common to two
sensors embedded in interference which is either mutually

independent at each sensor or have a vanishing cross bispectrum

A Sensor 1
receives x(t)

~~/\ Sensor 2
receives y(t)

A.M. Zoubir, Curtin University of Technology
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/ ‘Cross-Bispectral Detection Scheme' \

e Let x; and y; be two jointly-stationary, zero-mean, discrete-time

random processes modelling the sensor output signals.

e A detection scheme for the problem is based on testing the cross

bispectrum of the sensor output signals for zero, i.e.

H: C(j,k) =0,

V(j, k) € D',
K: C(j, k) #0,

where C(j, k) = Cpoy(2m5/n, 21k /n), is the cross bispectrum of
z; and y; at discrete frequencies w; = 27j/n, wy = 27k/n, and
D' = {(.F) : |j] < k < n/2}.

\_ /
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/ Limitations with Existing Methods' \

e Current detection methods [Tugnait (1993)] based on the cross

bispectrum assume enough data are available for asymptotic

results to apply.

e In some applications these assumptions are not valid leading to

degradation in the detector performance.

e Specifically, for small sample sizes, the probability of false alarm

1s not maintained at the nominal level.

Problem: Seek a solution in the case where the data size is small

and asymptotic tests are inapplicable.

\_ /
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/ ‘Principle of the Bootstrap Procedure' \

We use the following approrimate regression

Ixmy(]y k) — Ca:a:y(]a k) + 5(]7 k)V(], k),

where
oy K) = —da(5)de(R)d, G + )
and
V(j, k) =n[l+6(j — k)]Coa(j)Caz(k)Cyy (j + k).

This regression is consistent with asymptotic results.

\_ /
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/ ‘Bootstrap Procedure (Cont’d)' \

Step 1. Calculate I(i)(j,k), i = 1,...,P and é(j,k) =

b IO F). (k) €D
Step 2. Form residuals of the regression

NO) L) —
(7, vy
RS ZCTTNS
Step 3. Repeat N times (after mean-subtracting () (5, k)):
LGk = CGR 8GRV (R
LN 00
Ci(j, k) = F;Ib (j,k), b=1,..., N.

\_ /
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-

‘Bootstrap Procedure (Cont’d)'

<

Step 7.

Step 4.

Step 5.

Step 6.

Calculate test statistic

>

(4,k)eD’

C(j.k) = Co(4, k)
oG k) |

Calculate the bootstrap statistics

/\* k o ~ k

Tb* _ Z Cb(]aA*) . C(Jv ) . b=1,... N
('k: , Ub (]7k)
J:k)€D

Rank T, . . T* to obtain T(*l) . < T(*N)

Reject the null hypothesis if T>T (L(N+1)(1 a)])”

\_
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/ GLRT Simulation Results.

Interference % False Alarms % Detected
Common i.1.d. 5 99
Gaussian | AR(1) 6 99

interference | AR(5) 6 99
Independent | 1i.i.d. 31 99
exponential | AR(1) 30 99
interference | AR(H) 28 99

Detection results for a common MA(10) exponential signal in Gaussian and
Q)n—Gaussian interference for n = 512 and a = 5%.

<

/
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/ ‘Bootstrap Simulation Results (Cont’d) I

Interference % False Alarms % Detected
Common i.i.d. 4 93
Gaussian | AR(1) 1 94

interference | AR(5) 1 93
Independent | 1i.i.d. 8 94
exponential | AR(1) 1 93
interference | AR(5) 1 95

Detection results for a common MA(10) exponential signal in Gaussian and
Q)n—Gaussian interference for n = 512 and a = 5%.

<

/
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/Detection of a Non-Gaussian Signal Common to \
Multiple Sensors

Problem: How can the detection that uses measurements from two

sensors be extended when measurements are available from multiple

sensors so that a higher probability of detection is achieved?

Relevance: This problem is important in array processing

applications such as in sonar, radar, and communications.

Solution: We propose the use of the Bonferroni test of multiple
hypotheses coupled with a bootstrap method [Ong & Zoubir (1997)].

\_ /
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/ Multiple Tests I \

o Let 14,...,Zr414¢ t=0,...,n—1, be the discrete-time

measurements from L + 1 sensors.

e They are assumed to be zero-mean, jointly stationary, random

sequences.

e A non-Gaussian signal common to any two adjacent sensors can

be detected by testing the multiple hypotheses,

Hl . lemlin_l (]7 k) = 07

Kl . C:z:lmla:l+1 (]7 k) 7’jé 07

where Cy,4,2,.,(J, k) is the cross bispectrum of ; ; and x4,

K evaluated at discrete bifrequencies (27j/n, 27k /n). /

l=1,....L,
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/ ‘Multiple Tests (Cont’d)' \

1. Apply a detection method for two sensors on x;+ and x;4; + for
[=1,...,L.

2. Form a set of L p-values, Pq,..., Pr.

3. Compare the minimum p-value, P(y), to a/L, where « is the

nominal test level.

4. If Py < a/L, conclude that a non-Gaussian signal is present in
at least two adjacent sensors.

Using the Bonferroni level, a/L, limits the global level to a.

This procedure is equivalent to running two sensor tests with «/L instead of

Qand rejecting if any test rejects. /
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Simulation Results I
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% detected

<

Detection of an MA(10) exponential signal in AR(1) (left plot) and
AR(5) (right plot) Gaussian interference (512 data points):

100

90 -

80~

70

60

50

40~

30

20

10

2 sensors
3 sensors
5 sensors

&

Eys

In all cases, % false alarms = 0 (100 simulation runs)

SN?? (dB)
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‘Simulation Results (Cont’d) I

Detection of an MA(10) exponential signal in AR(1) (left plot) and
AR(5) (right plot) exponential interference (512 data points):
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In all cases, % false alarms < 3 (100 simulation runs)
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4 Outline} A

e Hypothesis Testing with the Bootstrap

— An Example: Testing the Frequency Response for Zero

e Signal Detection

— Examples
1. Bootstrap Matched-Filter

2. Detection of a Non-Gaussian Signal at Multiple Sensors

e | Model Selection

— Linear Models

\_ /
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/ ‘ Model Selection I \

e Several model selection procedures exist. They include Akaike’s

information criterion, Rissanen’s minimum description length

criterion, and Hannan and Quinn’s criterion.

e Bootstrap methods for model selection are simple and

computationally efficient.

e If one uses a bootstrap approach for the model selection and for
the subsequent inference, then the bootstrap observations
generated for model selection can also be used in the inference

procedure.

e Thus, the model selection procedure can be done at no extra

K computational cost. /
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4 Outline} A

e Hypothesis Testing with the Bootstrap

— An Example: Testing the Frequency Response for Zero

e Signal Detection

— Examples
1. Bootstrap Matched-Filter

2. Detection of a Non-Gaussian Signal at Multiple Sensors

e Model Selection

— | Linear Models

\_ /
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/ ‘Model Selection in Linear Models. \

Consider the linear model

)/t:a:;bA—Zt, t:O,...,n—l,

where Z; is a set of 1.1.d. random variables of unknown distribution
with gz = 0 and 0% > 0, and b is an unknown p-vector parameter.
Here, x; is the t-th value of the p vector of explanatory variables,
assumed to be known.

With Y = <Y0, e ,Yn_l),, r — <CEO, . e ,CBn_l),, b= (bl, e ,bp), and
Z = (Zy,...,Zn_1)", we have

Y =a2b+ Z.

\_ /
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/ Model Selection in Linear Models (Cont’d) I \

With (8 being as subset of {1,... ,p}, a model corresponding to ( is

given by

Y:a?gbg—I—Z,

where bg is a sub-vector of b containing the components of b indexed
by integers in 8 and xg is a matrix containing the columns of x

indexed by integers in (3.

Problem: Estimate (3 based on vyg, ... ,yn—1, Wwhere 3y is such that

b, contains all non-zero components of b only.

\_ /
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/ Model Selection in Linear Models (Cont’d) I \

We consider an estimator of the mean-squared error given by

n—1 »
1 - \2 ||Y —xgbgl?
La(B) = -3 (Ve whbs) = "
t=0

with w’ﬁt being the ¢-th row of 3 and I;ﬁ the LSE for bg. Then,

I (8)] = 0% — ZZ22 1 A (8),

n

where A, (B) = n " tp/ (I — wg(w’[gwﬁ)_lw’[;)u, with u = E[Y],
hg = wﬁ(w%wg)_lw’ﬁ being the p X p projection matrix and pg is the
size of bg. If 8 is correct, then A, (3) = 0.

Q&odel Selection: Minimise E[I',,(3)] over S. /
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/ Model Selection in Linear Models (Cont’d) I \

e A bootstrap model selection approach would minimise over (3

n—1 %9
- 1 5\ 2 ly — xpbg|]
t=0

n

where B; is the LSE based on (y;, xst).
e The estimator I',,(3) is biased. A better estimator is given by

ly - wﬁbﬁ,m2]

n

where B;m is obtained from y; = w:@’ti)ﬁ +2/,t=0,...,n—1,

with 2} being a resample from /n/m(2; — 2,)/+/1 — p/n and

n—1 ~

K Ze =N"") g 2t /
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/ Model Selection in Linear Models (Cont’d) I \

Step 1. Based on yg,...,y,_1, compute the LSE b and 3 =
yt—w;ti)a,tzo,... ,n—1, where a = {1,... ,p}.

Step 2. Resample with replacement from n/m(z; —
Ze)/v/1—p/n to obtain 2, where =™ — 0 and

- maxi<p hgt — 0 for all § in the class of models to

be selected. A
Step 3. Compute y; = xj5,bg+2{,t=0,... ,n—1 and the LSE

B;,m from (y;, xpa:). e
Step 4. Repeat Steps 2-3 to obtain bg ,,
1,...,N. .
Step 5. Average ffb(%(ﬁ) over 1 = 1,..., N and minimise over (3
to obtain BO.

\_ /
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Example: Trend Estimation'

Let x; = (1,t,...,t?),t=0,...,63 and b = (0,0,0.035, —0.0005)".
We simulate Y; = /b + Z; by adding standard normal and
ts-distributed noise. With N = 100 and m = 2 we obtain the
following results (based on 1,000 simulations).

N(0,1) ts
Model £3 * AIC MDL | I'* AIC MDL
(0,0,b0,b3) || 100 91 98 || 99 89 98
(0, b1, b, bs) 0 5 1 1 5 1
(bo, 0, by, bs) 0 3 1 0 3 1
(bo,b1,ba,b3) || 0 2 0 0 3 0

Qmpirical probabilities (%), excluding models not selected by any method.

<

A.M. Zoubir, Curtin University of Technology

133



ICASSP-99 Tutorial, 15 March 1999

4 Outline} R

e Model Selection

— | Non-Linear Models

— Order Selection in Autoregressive Models

e More Applications in Signal processing

— Confidence Intervals for Spectra
— Bispectrum Based Gaussianity Tests
— Noise Floor Estimation in Radar
— Confidence Intervals for Flight Parameters in Passive Sonar
— Model Selection of Polynomial Phase Signals
e Summary

e Acknowledgements

\_ /

A.M. Zoubir, Curtin University of Technology 134




ICASSP-99 Tutorial, 15 March 1999

/ Model Selection in Non-Linear Models. \

We define a nonlinear model by

th:g(IBt,b)—FZt, t:O,...,’I'L—].,

where Z; is a noise sequence of i.i.d. random variables of unknown

distribution with uz = 0 and 0% > 0, and g is a known function.

Define the collection of subsets of a = {1,... ,p} by B and

95t(bg) = gs(xse, bz), where 8 € B and gg is the restriction of the
function g to the admissible set of (xz:, bg). Let B be the admissible
set for b.

. . 0 n—1 . . .
With g(v) = %g) and mg(vy) = > ,—y 95:(7)95:(7)’, a consistent
bootstrap procedure for selecting 3 is as follows.

\_ /
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/Model Selection in Non-Linear Models (Cont’d) I\

Step 1. With v, t = 0,...,n — 1, find Ba, the solution of
__01 (Y — gat(Y)) G () = 0, for all v € B and the residu-
alszt—yt gat<i))t_0 . n—l

Step 2. Get Zf by resampling \/n/m Zt — Ze /\/1 —p/n.

Step 3. Compute bﬁ o =bsg+ mg(bg)( Zt 0 2 gﬁt(b@»)
Step 4. Repeat Steps 2-3 to obtain bg ,,,, i =1,...,N.
Step 5. To find ﬁo, minimise over (3
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(wl,wg 7£ O)

SNR with m = 35.

/ Example: Oscillations in Noise' \

Let Y; = coswit(1l + coswaot) + Z;, t = 0,...,39. In this case
B = {0k, k=1,2,3} so that gg,+(bg,) = 2coswit (w2 = 0),
93,t(bg,) =1+ coswat (w1 =0), and ga,+(bg,) = coswit(1 + coswat)

We chose w; = 0.27 and ws = 0.17 and run simulations at —1.2 dB

Method | 61 02 B3
Bootstrap || 3 0 97
AIC 0 3 97
MDL 0O 5 95

Qmpirical probabilities (%) based on 100 simulations.
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/ Order Selection in Autoregressive Models' \

Consider

Yi =011 +0Ye o+ 0p)Ysp + 2, teELZ,

where p is the order, bi, Kk = 1,... ,p, are unknown parameters and
Z; are i.i.d. random variables with uz = 0 and 0% > 0. Let
(Y—py--- 3Y=1,Y0,--- ,Yn—1) be observations and b the LSE of

b= (b,...,b,).

Select a model g from B = {1,... ,p} where each (3 corresponds to the
autoregressive model of order 3, 1.e., Yy = 01Yy_1 4+ ---bgYi_pg + Z;.

Objective: Find the optimal order, i.e.,
Bo =max{k:1 <k <p,br # 0}, where p is the largest order.

\_ /
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/‘ Order Selection in Autoregressive Models (Cont’d)\l

Step 1. Resample the residuals (Z; — Z,) to obtain Z;.
Step 2. Find by, the LSE of bg under § from y; =

Z}le Bkyz‘_k + 27 for t = —p,... ,m — 1, with m replacing
n and {y*p, e ,yo} replacing {y 2{’ . ,y_fN)}
Step 3. Repeat Steps 1-2 to obtain bﬁ, ..., bg,, and

- 2 (i) ) 2
P (8) =N~ 1%2( ~ Yk 13; 1biin)

1 =1 t=0

Step 5. Minimise F;’;)m(ﬁ) over (3 to find Gp.

The procedure is consistent for m — oo and m/n — 0 as n — oc.

\_ /
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/ ‘Example: Order Selection in an AR Model' \

We consider determining the order of the process described by
Y, =—-04Y; 1+ 0.2Y; o + Z;,

where Z; is a standard Gaussian variable. With n = 128 we obtained:

tez

Method 6=1 pg=2 p=3 (=4

@d m = 40, based on 1,000 simulations.

Bootstrap 28.0 65.0
AIC 17.8 62.4
MDL 43.2 54.6

Empirical Probabilities (%) of selecting the true AR model, Gy = 2, n = 128

2.0
7.2
0.1

/
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/ More Applications in Signal Processing' \

The relatively simple examples showed that the bootstrap is powertul.

This suggests its use in real-life applications and more complex
problems. We show now how the bootstrap can be applied for:

1. Confidence Intervals for Spectra [Franke & Héardle (1992), Politis et al.
(1992), Zoubir & Iskander (1996)]

2. Bispectrum Based Gaussianity Tests [Zoubir & Iskander (1996,1999)]
3. Noise Floor Estimation in Radar [Zoubir & Boashash (1996 )]

4. Confidence Intervals for Flight Parameters in Passive Sonar [Reid et
al. (1996), Zoubir & Boashash (1998)].

5. Model Selection of Polynomial Phase Signals [Zoubir & Iskander

K (1998,1999)]. /
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/ Confidence Intervals for Spectra \

e Several methods for spectrum estimation exist [Brillinger (1981),
Priestley (1981), Marple (1987), Kay (1989)].

e [t is often desirable to provide a confidence interval for the

spectrum based on the estimate as an accuracy measure.

e We present three different methods based on the bootstrap to

estimate confidence bands for the power spectrum.

e These methods are compared with the chi-squared approximation
for both Gaussian and non-Gaussian weakly dependent time

series.

\_ /

A.M. Zoubir, Curtin University of Technology 145




ICASSP-99 Tutorial, 15 March 1999

/ Confidence Intervals for Spectra (Cont’d) I \

Let Xo,...,X,,_1 be observations from a strictly stationary

real-valued time series X; with ux = 0, 0% > 0 and spectral density

- .
Cxx(w):ﬂ Z EX0X|T|6_JTW.

T——00

Denote the periodogram |Brillinger (1981), Marple(1987)] by

2

n—1
1 .
IXX(W):% E XpelFe| | —nT<w<T.
k=0

\_ /
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/ Confidence Intervals for Spectra (Cont’d) I \

We will consider a kernel estimate of C'x x (w)

M

~ 1 W — W

Cxx(w; h) = 5 K( ; k) Iy x (wg),
k=—M

e K (0) is symmetric and nonnegative (here Bartlett-Priestley
window [Priestley (1981)]),

e h is its bandwidth,

e M denotes the largest integer < n/2
o wi =2mk/n, —M < k<M.

\_ /
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/ Confidence Intervals for Spectra (Cont’d)

with m = [(hn —1)/2].
A 100a% confidence interval [Brillinger (1981)] is given by

(4m + 2) Cxx(w; h) (4m +2) Cxx(w; h)

1_|_a> <Cxx(LU)<

X4m+2( 5 X4m—|—2(12a)

where x?(«) is such that Pr[x? < x*(a)] = a.

presented below. It exploits the approximate regression
er = Ixx(wr)/Cxx(wk), k=1,..., M.

An alternative method proposed by Franke & Hardle (1992) is

variates with distribution Cx x (wk) X3 mao/(dm +2), k=1,...

Y

Asymptotically for large n, éxx(wl), . ,C*XX(wM) are independent
, M

<
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/ Confidence Intervals for Spectra (Cont’d) I \

Step 1. Compute Residuals. Choose an h; > 0 which does not

depend on w and compute

I'x x (wg)
Cxx (wk 3 hi)

Step 2. Rescaling. Rescale the empirical residuals to

ér C k=1,.... M

M

M

J=1

. & 5 1ZA
8]@:?, kzl,...,M, E = —= Ej -

Step 3. Resampling. Draw independent bootstrap residuals

€1,---,€y from the empirical distribution of €4, ...

\_

/
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/ Confidence Intervals for Spectra (Cont’d) I \

Step 4. Bootstrap estimates. With a bandwidth ¢, find

Iix(wr) = Ixx(—wp) =Cxx(wiig)én, k=1,...,M

M
A 1 W— Wk \
Cxx(wih) = nh Z K ( h ) Iy x (wr).
Step 5. Confidence bands edtimation. Repeat Steps 3 — 4 and
find ¢j; (and proceed similarly for ¢} ) such that

Pr. (\/nhOXX(w;h) — Oxx(wig) < c”&) = .

éXX(w; g)

That is {1+ ¢f5(nh)~*/2}"1Cx x (w; h) is the upper bound of
an (1 — 2a)%-confidence interval for C'x x (w).

Y

\_
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/ Simulation Results I \

Consider the AR process

X =05X;1—06X; 24+03X; 3—04X;_4+02X; 5+ €4,

where ¢; is an 1.i.d. N(0,1) process. With n = 256, N = 399 and
h = 0.1, we obtain the following 95% confidence interval.

12 T T T T T T 12

101 b 10

Power Spectrum
a

Power Spectrum
)

| | il | | | | T
o} 20 40 60 80 100 120 0 20 40 60 80 100 120
Sample Sample

K Residuals based method x* approximation /
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/ ‘Simulation Results (Cont’d) I \

Consider the AR process

Vi=Y;1—0.7Y;_2 — 04Y; 5+ 0.6Y;_4 — 0.5Y;_5 + (¢,

where (; is an i.i.d. U(—2.5,2.5) process. With n = 256, N = 399 and
h = 0.1, we obtain the following 95% confidence interval.

10% ‘ ‘ ‘ ‘ ‘ — 10

[
o
b
[y
o
-

Power Spectrum
[
o

Power Spectrum
[
o

.
o
|
.

wuuP/w Lol " Lol " L
B
o
(

10'2 L L L L L L 10'2 L L L L L L
(0] 20 40 60 80 100 120 (0] 20 40 60 80 100 120
Sample Sample

K Residuals based method x* approximation /

A.M. Zoubir, Curtin University of Technology 152




ICASSP-99 Tutorial, 15 March 1999

/ The Block of Blocks Bootstrap' \

The block of blocks bootstrap initially suggested in [Kiinsch (1989)]
was proposed for setting confidence bands for spectra in [Politis &
Romano (1992)]. An application of the block of blocks bootstrap to
higher-order cumulants can be found in [Zhang et al. (1993)].

Q segments

g segments

K Principle of the block of blocks bootstrap /
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-

Block of Blocks Bootstrap for Spectra'

<

Step 1. First block. Given X, ... ,X,,_1, obtain () overlapping
(0 < M < L) or non-overlapping (M = 0) segments of L

samples and estimate Cé()X( i=1,..., Q
Step 2. Second block. Divide C'g(;(( )y, C QX( ) into g over-
(h

lapping (0 < h < [) or non- overlappmg = 0) blocks, say

C;,j=1,...,q, each containing [ estimates.

Step 3. Resampling. Generate k bootstrap samples y7,... ,y; of
size [ each, from Cy,...,C,.

Step 4. Reshaping. Concatenate y7, ... ,y; into a vector Y* and

estimate C% x (w).
Step 5. Confidence interval. Repeat Steps 3-4 and proceed as

before to obtain a confidence interval for Cx x(w).

\_

/
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/ Simulation Results I \

Consider the AR process driven by an i.i.d. N(0,1) process:

Xt — O.5Xt_1 — O.6Xt_2 + O.SXt_g, — O.4Xt_4 + O.2Xt_5 + &¢ .
With n = 2,000, L =128, M =20, 1 =6, h = 2 and N = 100, we

obtain the following 95% confidence interval, based on 100 runs.

12 T T T T T T 12

101 b 10

Power Spectrum
a

Power Spectrum
)

I I I I 0 I I I I !
0] 20 40 60 80 100 120 [0] 20 40 60 80 100 120
Sample Sample

Qlock of blocks bootstrap method. Circular block bootstrap method. /
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/ ‘Simulation Results (Cont’d) I \

Consider the AR process driven by an i.i.d. U (—2.5,2.5) process:

Y=Y, 1 —0.7Y 5 — 0.4Y, 5+ 0.6Y;_4 — 0.5Y;_5 + (.

With n =2,000, L =128, M =20,1 =6, h =2 and N = 100, we
obtain the following 95% confidence interval, based on 100 runs.

10% ‘ ‘ ‘ ‘ ‘ — 10

[
o
b

10" |

10° .

Power Spectrum
[
o

Power Spectrum

.
O\
-
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wlock of blocks bootstrap method. Circular block bootstrap method. /

A.M. Zoubir, Curtin University of Technology 156




ICASSP-99 Tutorial, 15 March 1999

4 Outline} R

e Model Selection

— Non-Linear Models
— Order Selection in Autoregressive Models

e More Applications in Signal processing

— Confidence Intervals for Spectra

— | Bispectrum Based Gaussianity Tests

— Noise Floor Estimation in Radar
— Confidence Intervals for Flight Parameters in Passive Sonar
— Model Selection of Polynomial Phase Signals

e Summary

e Acknowledgements

\_ /

A.M. Zoubir, Curtin University of Technology 157




ICASSP-99 Tutorial, 15 March 1999

/ Testing for Departure from Gaussianity' \

e Tests for departure from Gaussianity [Subba Rao & Gabr (1980),

Hinich (1982)] have received considerable interest among signal

processing practitioners [Swami et al. (1995)].

e A limitation of the tests is the large amount of data required for

the asymptotic distribution of the test statistics to hold.

e The bootstrap can be used to test for departure from Gaussianity

with high power while maintaining the level of significance, even
for small sample sizes [Zoubir & Iskander (1999)].

e The bootstrap can also be used to set confidence bands for the
bicoherence [Zoubir & Iskander (1996)].

\_ /
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=

/Testing for Departure from Gaussianity (Cont’d)

o Let Xy,...,X,,_1 be observations from a strictly stationary
real-valued time-series X;, t € Z, with ux = 0,0% > 0 and
CXXX(wjawk)a —m < (wjawk) < 7.

e For a Gaussian process (as well as any other symmetric process)
Cxxx(wj,wg) = 0. Testing the bispectrum for zero may be seen

as testing for departure from Gaussianity.

e Rejection of the hypothesis implies that the process is

non-Gaussian; otherwise, it may be non-Gaussian.

e We would test Cxxx(w;,wy) for zero when w; and wy, are
restricted to 0 < wp, < wj, wi + 2w; < 27 due to symmetry.

\_ /
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/Testing for Departure from Gaussianity (Cont’d)

segments of n consecutive measurements and calculate the

dx is its complex conjugate.
An estimate of Cx xx(wj,wr) is obtained through

1 P

OXXX(wj,wk) ) ZI;)XX(%’WI{)-
i=1

\_

=

Divide the observations X;, ¢ =0,...,7T — 1 into P non-overlapping

periodogram Iﬁg)XX(wj, wg) for each segment ¢ =1,..., P,
(i) Loy @ 7 ()
Iy x (wj,wi) = —dy (wj)dx (we)dx " (wj +wg),  —T S wj,wp <7,

where dg? (w;) is the finite Fourier transform of the i-th segment and

A.M. Zoubir, Curtin University of Technology
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=

/Testing for Departure from Gaussianity (Cont’d)

Our procedure is based on the approximate regression

Iy x (W, wi) = Cxxx (wy,wr) + €51V (W, wi), (J,k) €D,
V(wj,wp)® = nOxx(w;)Cxx (wi)Ox x (wj + wi)

X [14+67—k)+0(n—2j—k)+46(n—3j)d(n— 3k)] .

Herein, C'x x (w) is the spectrum of X;, §(k) is Kronecker’s delta
function, w; = 27j/n and wy = 27k /n are discrete frequencies and
D={0<k<yj, 2j+k<n}.

We shall assume that ¢; ; are independent and identically distributed

random variates which holds for a reasonably large n.

\_ /
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/Testing for Departure from Gaussianity (Cont’d)

=

Step 1. Calculate Iﬁ?X(wj), IQXXWL W), éXX(wj)a

Cxxx(wj,wr), 6(wj,wy) (using the bootstrap) and

é: Z |éXXX(Wjawk)|
j,kED &(wj’wk’)

Step 2. For each segment, estimate the residuals

1Y (W), wr) — Cxxx (wj, w)
V(wja wk)

(1) _
ik
Step 3. Centre the residuals to obtain 5<) 200)

1,...,P, where &% is an average over all Y,)f

\_
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/Testing for Departure from Gaussianity (Cont’d)

=

Step 4. Draw independent bootstrap residuals gli)

Step 5. Compute the bootstrap biperiodogram Jidinates

%% x (i, wr) = Cxxx (wj, wi) + &4V (wj, wi).

Step 6. Obtain the bootstrap bispectral estimate
1 o= (;
Cx x x (W, wr) = P ZI;);X(WM W) 5
i=1
Step 7. Compute the statistic

O — Z Cxxx (Wi i) — éXXX(wjvwk)‘.

o (wjv wk)

7,k€D

\_
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=

/Testing for Departure from Gaussianity (Cont’d)

total of NV bootstrap statistics® C*i’:, .
Step 9. Rank the collection C7, ...

obtain C(l)

éXXX(wj,wk) and Ig);x

spectively. Then, compute

B

1
P

b=1

% ~xx(b
& (wj, wi)? = (cx;%;(wj,wk)

b/_

Step 8. Repeat Steps 4—7 a large number of times, to obtain a
CN'*
N mto increasing order to

- < C'( NY- Reject the hypothesis of Gaussian-
ity at level o if C' > C’( )» where ¢ = [(N +1)(1 — o) .

%5*(w;,wk)? is obtained as follows. For each Iy « x (wj,wg), repeat Steps
3-6 (nested bootstrap) a small number of times e.g., B

(wj,wg) by CA’}XX(wj,wk) and I’y

LS et

25), replacing

(wj,wg), re-

2

(wj’wk?)> 9

Kwhere CA’;*)(:)){ (wj,wg),b=1,...,B1,is abootstrap version of CA’;‘(XX (wj,wg). /
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/ Simulation Results I

We considered three processes:
e a white process
e an auto-regressive process of order five [AR(5)], and
e a moving-average process of order two [MA(2)].

Specifically, we assumed X ; = Y4,

Xg’t — 0.5Xt_1 - 0.6Xt_2 + O.SXt_g - 0.4Xt_4 + 0.2Xt_5 + )/;5,

Xs5¢ = 0.5Y; +0.3Y;_1 +0.5Y; 5, teZ

where Y; is an independent random process with distribution Fy-,

\_

<
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/ Simulation Results I \

Fy iid. AR(5) MA(2) Fy iid. AR(5) MA(2)
N(0,1) 6 4 16 N(0,1) 5 2 1
U0,1) 2 7 6 U@0,1) 5 2 1

X5 92 91 88 % 95 72 63

i 39 34 14 i 69 22 12
Laplace 23 27 20 Laplace 16 2 1
K(1,1) 62 66 44 K(1,1) 78 42 20
LogN 100 100 98 LogN 100 91 77

Rejection rate (¢ = 5%) using  Rejection rate (o« = 5%) using the
Subba-Rao and Gabr's test (T = bootstrap test (17" = 256, n = 22).

\>” /
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/ Simulation Results I \

Fy iid. AR(5) MA(2) Fy iid. AR(5) MA(2)
N(,1) 8 8 7 N(,1) 3 2 3
U©,1) 7 4 10 U@0,1) 6 1 2

X3 100 100 98 % 100 94 89

i 61 48 32 i 89 60 38
Laplace 39 38 45 Laplace 14 8 3
K(1,1) 85 82 68 K(1,1) 98 84 57
LogN 100 100 96 LogN 100 100 93

Rejection rate (¢ = 5%) using  Rejection rate (o = 5%) using the
Subba-Rao and Gabr's test (T = bootstrap test (7' = 512, n = 22).

\ /
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/ Interpretation of the Results' \

e Subba Rao and Gabr’s test is unable to maintain the 5% level of

significance for symmetric processes, e.g. for coloured Gaussian

or independent/coloured Laplace process.

e The test based on the bootstrap maintains the nominal level of
significance at below 5%, except in the case of independent

uniform and Laplace processes for T' = 512.

e A comparison of power is appropriate only if the tests maintain
the same nominal level of significance. We found that the

bootstrap test achieves power comparable to or better than
Subba Rao and Gabr’s test.

\_ /
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/Conﬁdence Bands estimation for the Bicoherence\l

e We can use the above method to set confidence bands for higher

order spectra or cumulants.

e Repeating steps 46 a large number of times, one can obtain a

total of NV bootstrap estimates of the bicoherence, as
A% (1) . ~*(B) .
Cxxx (Wi, wr)|/0(wj,wi), - s [Cxxx (Wi, wi)|/0(wj, wr).

o After sorting these estimates at each frequency pair (w;,wy) one
is able to determine the confidence bands using estimated

percentiles obtained as in the above procedure [Zoubir &
Iskander (1996,1999)].

\_ /
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/Conﬁdence Bands estimation for the Bicoherence\l
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/ ‘Noise Floor Estimation in Radar. \

e The noise floor is one of the main radar performance statistics.

e It is computed by taking a trimmed mean of power estimates in
the Doppler spectrum, after excluding the low Doppler power

associated with any stationary targets or ground clutter.

e The radar operator requires an optimal value for the trim and
also supplementary information describing the accuracy of the

computed noise floor estimate.

e The limited number of samples available and the non-Gaussian
nature of the noise field make it particularly difficult to estimate

confidence measures reliably. This suggests the use of the

K bootstrap. /
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/ ‘Optimal Selection of the Trim' \

e The goal is to use the bootstrap to optimally select the amount

of trimming, «, say.

e The problem can be stated as one of estimation of 6 from a class
of estimates {f(a) : a € A} indexed by a parameter «, which is

selected according to some optimality criterion.

e It is reasonable to use the estimate that leads to a minimum
variance. Because the variance of é(oz) may depend on unknown

parameters, the optimal parameter «, is unknown.

\_ /
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/ ‘Optimal Selection of the Trim (cont’d) I \

e The objective is to find a by estimating the unknown variance of

6(a) and select o which minimises the variance estimate.

e The problem of trimming has been solved theoretically [Jaeckel
(1971)] for the mean of symmetric distributions. The trim is,

however, restricted to the interval [0, 25]%.

e In addition to the fact that for a small sample size asymptotic
results are invalid, explicit expressions for the asymptotic

variance may not be available outside the interval [0, 25]%.

\_ /
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/An Example: Selection of the Trim for the Mean\l

Let X = {X;,...,X,} be a random sample drawn from a
distribution function F'.

Let X(1),...,X(n) denote the order statistics.

For an integer « less then n/2, the a-trimmed mean based on the
sample X is given by

1 n—o
o <.
ia) = —— i;ﬂ (i

For an asymmetric distribution we use the a(-trimmed mean:

) 1
M(av ): Z X(z)7 Oé,ﬂ<n/2-

A.M. Zoubir,

Curtin University of Technology
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/ ‘ Example I \

Step 1. Initial conditions. Select the initial trim o = 0 and 3 = 0.

Step 2. Resampling. Using a pseudo-random number generator,

draw a large number, say IV, of independent samples

—{‘)(117...7 fn}7"'7X;\}:{X]>§717"'7X]>§7’)’L}

of size n from X. Each sample is taken with replacement.

Step 3. Calculation of the bootstrap statistic. For each bootstrap

sample X, j =1,..., N, calculate the trimmed mean
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/ ‘ Example (cont’d) I \

Step 4. Variance estimation. Using bootstrap based trimmed mean

values, calculate the estimate of the variance

2
N

N
1 1
Ak ~ % A %
g TN _1 :uj(aaﬁ)_ﬁj;:uj(aaﬁ)

j=1

Step 5. Repetition. Repeat steps 2—4 using different combinations of
the trim o and (.

Step 6. Optimal trim. Choose the setting of the trim that results in

a minimal variance estimate.

\_ /
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/ ‘Noise Floor Estimation in Radar. \

e In radar, we estimate residuals for the Doppler spectrum by

taking the ratio of the periodogram and a spectral estimate of
the raw data. The residuals are used for resampling to generate

bootstrap spectral estimates as in a previous example.

e We proceed as in the example for the trimmed mean, replacing
X; by CA’XX(wi), where w; = 2mwi/n, i =1,... ,n, are discrete

frequencies and n is the number of observations.

e The procedure makes the assumption that the spectral estimates

are i.i.d. for distinct discrete frequencies.

e The optimal noise floor is found by minimising the bootstrap

K variance estimate of the trimmed spectrum w.r.t. (a, ). /
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/ Noise Floor Estimation in Radar (Cont’d) I \

The radar return is assumed to consist of 128 observations from a

40F

complex-valued AR(4) process, driven by a Gaussian process.

T
Cyy
3 c 1
T NN

30} - ™

25

[ [
a1 o
T T

Power Spectrum [dB]
B
o
T

| | | | | | | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler Frequency

Qoppler spectrum and estimated noise floor. With N = 99, 9(&0,[%) = 0.8()/
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/ ‘Noise Floor in Over-The-Horizon Radar. \

70 T

CXX

- CNN
ol i 1 VI

Power Spectrum [dB]
N o1
o o

w
o

20

| | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler Frequency

10 1 1 1

Doppler spectrum and estimated noise floor for a real over-the-horizon radar

Cturn (no target present). With N = 99, 0(éo, 80) = 2.0738 x 10°.

/
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/ ‘Noise Floor in Over-The Horizon Radar. \

70

C

XX
NN
Target ™

65

60

a1
a1

al
o

Power Spectrum [dB]
I ~
o 6]

| | | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler Frequency

Doppler spectrum and estimated noise floor for a real over-the-horizon radar

Cturn (target present). With N = 99, 8(&o, o) = 8.9513 x 10°.

/
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‘ Outline I

Model Selection

Non-Linear Models
Order Selection in Autoregressive Models

More Applications in Signal processing

Confidence Intervals for Spectra
Bispectrum Based Gaussianity Tests
Noise Floor Estimation in Radar

Confidence Intervals for Flight Parameters in Passive Sonar

Model Selection of Polynomial Phase Signals

Summary

Acknowledgements
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/ Confidence Intervals for an Aircraft’s Flight \
Parameters

OVERFLYING AIRCRAFT

%

ACOUSTIC EMISSION

Q MICROPHONE

Schematic of the passive acoustic scenario.

\_ /

A.M. Zoubir, Curtin University of Technology 183




ICASSP-99 Tutorial, 15 March 1999

-

A

\_

The Passive Acoustic Approach'

e Information about the flight parameters is contained in the

acoustic signal as heard by the stationary observer.

e The frequency of the observed acoustic signal s(¢) from the

over-flying aircraft undergoes a time varying Doppler shift.

<

e Thus, the phase of s(¢) undergoes a time varying rate of change.

simple model for the aircraft acoustic signal, as heard by a

stationary observer, is given by

X(t) = 2(t) + U(#) = A?*D 1 U (1) = AP> o 1D L 173

where z(t) = s(t) + jH[s(t)] and H[-] is the Hilbert transform.

A.M. Zoubir, Curtin University of Technology
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/ ‘ Problem Description I

Vs Um

Q‘ the physical parameters of the model.

<

Schematic of the geometric arrangement of the aircraft and observer in terms

/

A.M. Zoubir, Curtin University of Technology

185



ICASSP-99 Tutorial, 15 March 1999

/ ‘Problem Description (Cont’d) I \

Context: Estimation of an aircraft’s flight parameters (height,

speed, range and acoustic frequency) from the acoustic signal as
heard by a stationary observer [Reid et al. (1997), Ferguson (1992),
Ferguson & Quinn (1994)].

Problem: To estimate an aircraft’s flight parameters using passive

acoustic techniques and to determine confidence bounds given only a

single acoustic realisation.

Solution: Estimate the aircraft flight parameters from the time

varying phase of the observed acoustic signal. Use bootstrap
techniques to estimate the confidence bounds [Reid et al. (1996),
Zoubir & Boashash (1998)].

\_ /
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/ ‘The Passive Acoustic Model' \

An observer phase model ¢(t) describes the phase of the observed

acoustic signal in terms of the flight parameters and is given by

o(t) = 2m

c2 — 2 c3

2 2 242 2
o C hc + v¢tec + 2v“th
/ (t\/ il il >+qﬁo, —00 < t < 00,

where g is the time when the aircraft is directly overhead, f, is the
source acoustic frequency, ¢ is the speed of sound in the medium, v is
the constant velocity of the aircraft, h is the constant altitude of the

aircraft and ¢g is an initial phase constant.

\_ /
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/ The Passive Acoustic Model (Cont’d) I \

From the phase model, the instantaneous frequency (IF), relative to

the stationary observer, can be expressed as

Lot fad? <t+h/c)
)= o~ c2—v2( V12 (2 = 0%) + 0?2 c2<t+h/c)>.

For a given f(t), or ¢(t), —oco <t < oo and ¢, the aircraft parameters
collected in the vector @ = (f,, h,v,ty)" can be uniquely determined

from the phase or observer IF model.

Consider appropriate sampled versions of the continuous-time signals
and denote by ¢; and X;, the phase, and the observed signal as

chtions oft =0,+1,+£2,.... /
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‘The Instantaneous Frequency' \

115

-

110

105

100

frequency (Hz)
& 8 &

o]
o
T

751

701

65 1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15
time (s)

Typical Time varying acoustic frequency profile of an over-flying aircraft as
described by the observer frequency model. For this example, v, = 75 m/s,

h =300 m, f, =85 Hz and to = 0 s. The cartwheel symbol indicates the time
(c which the aircraft is directly overhead the observer. /
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/ The Instantaneous Phase. \

16000 -

14000

12000

== 10000~

phase (radians)
]
3

6000 -

4000

2000

1 1 1 1 1 1 1
-15 -10 -5 0 5 10 15
time (s)

Typical Time varying acoustic phase profile of an over-flying aircraft as
described by the observer phase model. For this example, v, = 75 m/s,

h =300 m, f, =85 Hz and to = 0 s. The cartwheel symbol marks the time at
which the aircraft is directly overhead the observer.

\_ /
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/ A Bootstrap Approach' \

Step 0. Collect and sample the data to obtain X;, t =
—n/2,...,n/2—1.

Step 1. Unwrap the phase of the signal X; to provide a non-

decreasing function ggt which approximates the true phase ¢;.

Step 2. Obtain 9, an initial estimate of the aircraft parameters
by fitting the non-linear observer phase model ¢ 10 o qAﬁt in a

least-squares sense.

Step 3. Compute the residuals

\_ /
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/ ‘A Bootstrap Approach (Cont’d)' \

Step 4. Compute 7;, a bootstrap estimate of the standard devi-
ation Oféi, 1=1,....,4.

Step 5. Draw a random sample X* = {éin/w ce 752/2—1}7 with

replacement, from X = {é_,, 5, -+ ,€,/2_1} and construct
by = ¢, 9+ E -

Step 6. Obtain and record the bootstrap estimates of the aircraft

parameters 0 by fitting the observer phase model to qgf in a

least-squares sense.

\_ /
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/ ‘A Bootstrap Approach (Cont’d)' \

Step 7. Estimate the standard deviation of 92‘ using a nested

bootstrap step and compute and record

Step 8. Repeat Steps 5 through 7 a large number of times V.

(2) .. S

T ;') and compute the (1 — a)100% confidence interval

Step 9. Order the bootstrap estimates as T*(l) < T*

(0: = T (g)01, 0i = T} (g)60),

?,

where g = N — |[Na/2] +1 and ¢; = [ Na/2].

\_ /
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Simulation Results I \

e An n = 320 point passive acoustic signal z; is generated at three
levels of SNR (15 dB, 20 dB and 30 dB).

o We set h=304.8 m, v =102.89 m/s, f, =1 Hz, t; =0 s,
sampling frequency fs = 8 Hz and bootstrap variables By = 25,
By = 100 and B3 = 1000.

e The bootstrap confidence bounds are computed and compared
with those obtained by Monte Carlo simulation where the aircraft

parameters are calculated for 1000 independent realisations of z;.

/
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Simulation Results (Cont’d)

<

B [m] v [m/s] to [s] fa [Hz]
SNR Actual 304.8 102.89 0.000 1.000

dB BS MC BS MC BS MC BS MC

Upper Bound 308.40 308.0 102.94 103.04 0.004 0.002 1.000 1.000

30 Lower Bound 301.4 301.9 102.67 102.74 -0.005 -0.006 1.000 1.000

Interval length 6.6 6.1 0.27 0.30 0.009 0.008 0.000 0.000

Upper Bound 309.5 314.5 103.17 103.34 0.011 0.016 1.000 1.000

20 Lower Bound 290.8 295.2 102.26 102.44 -0.020 -0.016 0.999 0.999

Interval length 18.7 19.3 0.91 0.90 0.031 0.032 0.001 0.001

Upper Bound 315.7 320.7 103.54 103.65 0.040 0.027 1.001 1.001

15 Lower Bound 286.0 288.6 102.14 102.12 -0.008 -0.027 0.999 0.999

Interval length 29.7 32.1 1.40 1.53 0.048 0.054 0.002 0.002

Cmulation.

compared with the 95% confidence bounds determined by Monte Carlo

The bootstrap derived 95% confidence bounds for each of the parameters are

/
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Simulation Results (Cont’d)

300 300
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| D
o . 1 . , o
0.9992 0.9996 1 1.0004 1.0008 0.9992 0.9996 1 1.0004 1.0008
300, (@) source frequency (Hz) (Bootstrap) 300 (€) source frequency (Hz) (Monte Carlo)
| |
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> >3
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© 100t © 100
I
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(d) time reference (s) (bootstrap) (h) time reference (s) (Monte Carlo)

The histograms of the bootstrap distribution (left column) are compared with
the histograms obtained by Monte Carlo simulation (right column) for each of

Qe parameters at 20 dB SNR. The true values are indicated by the dashed Iiny
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/ Real Experiment I

<

-100

_50 L

50F

seconds of latitude (relative to the ground location)

100 R

150 B S

-150

Qrtwheel symbol.

-100 -50 0 50 100
seconds of longitude (relative to the ground location)

The complete flight path of an aircraft acoustic data experiment conducted at

Bribie Island showing five fly-overs. The ground location is indicated by the

/
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Real Experiment (Cont’d)

h [m] v [m/s] to [s] fa [Hz]
Nominal Value 149.05 36.61 0.00 76.91
Run Upper Bound 142.03 36.50 0.02 76.99
Lower Bound 138.16 36.07 -0.03 76.92
Interval length 3.87 0.43 0.05 0.07
Nominal Value 152.31 52.94 0.00 77.90
Run Upper Bound 161.22 53.27 -0.04 78.18
Lower Bound 156.45 52.64 -0.06 78.13
Interval length 4.77 0.62 0.02 0.05
Nominal Value 166.52 47.75 0.00 75.94
Run Upper Bound 232.30 57.29 0.10 76.48
Lower Bound 193.18 53.47 -0.14 75.87
Interval length 39.13 3.83 0.24 0.60
Nominal Value 233.01 56.56 0.00 77.65
Run Upper Bound 243.02 57.15 0.74 77.96
Lower Bound 209.72 53.69 0.68 77.80
Interval length 33.30 3.46 0.06 0.16

we unwrapped phase based parameter estimator.

<

The bootstrap derived 95% confidence bounds for four real test signals using

/
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/ Interpretation of the Results' \

e The proposed bootstrap and unwrapped phase based estimation

techniques can be used to provide a practical flight parameter

estimation scheme.

e The techniques do not assume any statistical distribution for the
parameter estimates and can be applied in the absence of

multiple acoustic realisations.

e The obtained confidence bounds are in close agreement with

those obtained from Monte Carlo simulations.

e Similar experiments with Central Finite Difference (CFD)
estimates were performed. The confidence bounds presented here
K are much tighter than those of the CFD based estimates. /
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4 Outline} A

e Model Selection

— Non-Linear Models
— Order Selection in Autoregressive Models

e More Applications in Signal processing

— Confidence Intervals for Spectra

— Bispectrum Based Gaussianity Tests

— Noise Floor Estimation in Radar

— Confidence Intervals for Flight Parameters in Passive Sonar

— | Model Selection of Polynomial Phase Signals

e Summary
e Acknowledgements
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/ ‘Modelling Polynomial Phase Signals' \

e Many non-stationary signals encountered in radar, sonar,

telecommunications, seismology, or biomedical engineering can be

expressed in the general form of a complex analytic signal

z(t) = ag exp{jep(t)}

where ag and ¢(t), t € [Ty, T3], T1,T> < 0o, are the amplitude
and the phase of the signal, respectively.

e In practice, z(t) is observed in stationary complex noise U (t) and

sampled, yielding values =4, t =0,... ,n — 1, from the model

X = agexp{jos} + Uy, t=20,...,n—1.

\_ /
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/ Modelling Polynomial Phase Signals (Cont’d) I \

e Provided that certain regularity conditions are fulfilled [Kreyszig
(1989)], ©(t) can be modelled by

Q
Xt:aoexp{jz:bqwt,q}—kUt, t=20,...,n—1,

q=0

where b, ¢ = 0,...,(Q, are unknown real valued parameters, and

{11 4} is an arbitrary set of basis sequences.

e The signal z; = agexp {j Z?:O bq¢t,q}, t € Z, is referred to as a
frequency modulated (FM) signal.

\_ /
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/ Modelling Polynomial Phase Signals (Cont’d) I \

In the special case where ¢, , = t9, z; i1s called a polynomial

phase signal.

Problem: Given a short segment of length n of noisy

observations of the polynomial phase signal, model z;. Modelling

involves selection of the model and conditional estimation of the
parameters [Akaike (1978)].

model selection consists of choosing an appropriate set of
sequences t4, g € B, 8 C {0,... ,Q}, where () is an arbitrarily

large model order.

Conditional estimation of the model parameters refers to
estimation conditioned on the unknown model. /
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/ ‘Bootstrap Model Selection based on LSEI \

e Assuming that SNR = a3 /o is large, one can write for
t=0,...,n—1 [Tretter (1985), Djuric & Kay (1990)]

Q Q
X; = ag exp {ijqtq} + U; =~ ag exp {j (qutq +Wt> },
q=0

q=0

with W, real, zero-mean, i.i.d. and o3, = 07, /(2a3).
e The estimation problem is reduced to
P=HbL+W,

where ® = (¢g,...,0pn_1), W = Wq,...,W,_1),
b

b = (b07 <. 7bQ),7 H = (h67 <. 7h:1—1),7 h:ﬁ — (17 tQ),’

K t=0,... ,n—1. /
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/ Residuals Based Bootstrap Model Selection' \

With 3 a subset of {0,...,Q}, the optimal model is the model S,
such that bg, contains all non-zero components of b, where bg is a

vector containing the components of b indexed by the integers in (3.

Step 1. Select the largest possible model 3 = {0,...,Q}, and

find the least-squares estimate b of b = (b, ... ,bg)’.
Step 2. Compute the residuals

W, = ¢y — hib, t=0,....,n—1.

Step 3. Centre and scale the residuals, to obtain

n—1
- . 1 ) Q+1
’lUt(thtEO’wt)/\/l o , t:O,,n—l

\_
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‘Bootstrap Model Selection (Cont’d)'

<

Step 4. For all models 6 C {0,...,Q},

(a) Draw wj, with replacement, from w;, t =0,... ,n — 1.

(b) Compute
&7 = hi,bg + 0y, t=0,....1—1,

where [ is such that [/n — 0 and | — oc.

(c) Find the least-squares estimate IA)Z;Z from (b).
(d) Compute

3

_ 1S Z (60— Hby)
t=0

\_
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/ ‘Bootstrap Model Selection (Cont’d)'

<

Step 4. (Continued)

(e) Repeat steps (a)-(d) a number of times (e.g. 100),
to obtain a total of N bootstrap statistics
I‘Z(j)(ﬁ), . ,F*(N) (6) and compute

n,l
N
EOWIE

Step 5. Choose (3 for which I‘;’fb,l(ﬁ) is minimum w.r.t. 0.

The procedure above is consistent in that lim,, Pr{B = 0o} =1,
provided [ is such that [/n — 0 and [ — oo [Shao (1996), Zoubir &

Qkander (1999)].
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/ Simulation Results I \

e Consider a quadratic FM signal of the form

2z = exp{j(0.5 + 0.05¢ + 0.0002¢3)}, t=0,....n—1,

embedded in i.i.d. noise U;, t = 0,... ,n — 1. The true model of
this quadratic FM signal is 3, = {bg, b1, b3 }.

e The noise is selected to be Gaussian, although the distribution of

the noise is not relevant provided it has a finite variance.
e The signal-to-noise ratio ranges from 5 dB to 15 dB.

e 100 bootstrap resamples are used. The number of samples in
each realisation is set to n = 64 and [ = 48 (I should be such that

K () /1 is reasonably small). /
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/ ‘Simulation Results (Cont’d) I \

AIC MDL HQ AICC

Model 3 I ,(B)
(bo, 0, ba, bs, 0) 0
(bo, 0, ba, b, bs) 0
(bo, b1, 0,b3,0) 100.0
(bo, b1, 0, b3, bs) 0
(bo, b1, ba, b3, 0) 0
(bo, b1, ba, bs, ba) 0

0 0
0.8 4.8
82.7 88.9
5.1 3.0
5.0 3.1
1.4 0.2

\_

Empirical probability (in percent) of selecting the true model, (b, b1, 0, b3, 0),
of a quadratic FM signal embedded in Gaussian noise. SNR = 15dB, n = 64,

[ = 48. Models not selected by any of the methods are not shown.

/
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/ ‘Simulation Results (Cont’d) I \

Model 5 I‘;’fbl(ﬁ) AIC MDL HQ AICC
(bo, 0,0, b3,0) 0.9 0 0
(bo, 0,0, bs,by) 0 1 1.1
(bo, 0,b2,0,0) 0.2 0 0
(bo, 0, b2,0,by) 0 0.7 1.2
(bo, 0, b2, b3,0) 0.3 13.7 13.9
(bo, 0, ba, b3, by) 0 5) 3.9
(bo, b1,0,0,by) 6.2 1 0.8 1.2
(bo, b1,0,b3,0) 84.9 56.9 62 8 53.4 58.9
(bo, b1,0,b3,by) 0 .0 .3 2.9 1.2
(bo, b1, b2,0,0) 5.3 1 4 1.1 1.1
(bo, b1,b2,0,b4) 0 1 9 3.4 2.3
(bo, b1, ba, b3, 0) 2.6 1 .2 3.9 3.1
(bo, b1, b2, b3,b4) 0 14.9 12.5
Empirical probability (in percent) of selecting the true model, (b, b1, 0, b3, 0),

Q‘ a quadratic FM signal in Gaussian noise. SNR = 5dB, n = 64, | = 48. /
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/ Interpretation of Results' \

e Bootstrap techniques can be applied to constant amplitude

polynomial phase modelling.

e Results have shown that the empirical probability of correctly
selecting the model of a constant amplitude polynomial phase

signal is high at a reasonable SNR.

e A comparison with other techniques demonstrates the superiority

of bootstrap techniques.

e Other bootstrap techniques based on the discrete polynomial
phase transform have also been devised. They consist of a

two-stage approach involving hypothesis testing |Zoubir &

K Iskander (1999)]. /
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4 Outline} R

e Model Selection

— Non-Linear Models
— Order Selection in Autoregressive Models

e More Applications in Signal processing

— Confidence Intervals for Spectra

— Bispectrum Based Gaussianity Tests

— Noise Floor Estimation in Radar

— Confidence Intervals for Flight Parameters in Passive Sonar

— Model Selection of Polynomial Phase Signals

e | Summary

e Acknowledgements
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/ Summary I \

e It is often necessary to find the sampling distributions of

parameter estimators, so that the respective means and variances
can be calculated, and more generally, confidence intervals for

the true parameters can be set.

e Most techniques for computing variances or confidence intervals
assume that the size of the available set of sample values is

sufficiently large, so that “asymptotic” results can be applied.

e In many signal processing problems this assumption cannot be
made because, for example, the process is non-stationary and
only small portions of stationary data are considered.
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/ ‘ Summary (Cont’d) I \

e Bootstrap techniques are an alternative to asymptotic methods.

e The bootstrap does with a computer what the experimenter
would do in practice, if it were possible: they would repeat the

experiment.

e With the bootstrap, the observations are randomly re-assigned,
and the estimates re-computed. This process is done thousands

of times to simulate repeated experiments.

e In an era of exponentially increasing computational power, such

computer-intensive methods are becoming increasingly attractive.
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/ ‘ Summary (Cont’d) I \

e The tutorial provides the fundamental concepts and methods

needed by the signal processing practitioner to decide when and
how to apply the bootstrap successfully.

e The tutorial focuses on the independent data bootstrap. The
assumption of i.i.d. data can break down in practice either
because the data is not independent or because it is not
identically distributed, or both.

e The bootstrap can still be invoked if we knew the model that
generated the data. In other cases we can make the reasonable

assumption that the data is identically distributed but not

K independent such as in autoregressive processes.
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/ ‘ Summary (Cont’d) I \

e For confidence interval estimation or hypothesis testing, it is

essential that the statistic used is asymptotically pivotal.

e It has been shown that working on a variance stable scale is
better than studentising.

e When a variance stabilising transformation is not known,

bootstrap can be used to estimate it.

e Many applications have been presented to demonstrate the power
of the bootstrap. Special care is however required when applying

the bootstrap in real-life situations.
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