
Robust Estimation, Random Matrix Theory and
Applications to Signal Processing

Frédéric Pascal

CentraleSupelec, Laboratory of Signals and Systems (L2S), France
frederic.pascal@centralesupelec.fr

http://fredericpascal.blogspot.fr

IEEE/EURASIP Summer School on Robust Signal Processing
Sep. 21, 2016

http://fredericpascal.blogspot.fr


Contents

Part A
Robust Covariance Matrix Estimation: CES distributions, ML-, M -
and regularized M -estimators

Part B
M - and regularized M -estimators in the large dimensional regime

Part C
Application(s): DoA estimation, target detection, distribution fitting,
Hyperspectral processing ...



Outline
I. Introduction

Motivations
Results

II. Estimation, background and applications
Modeling the background
Estimating the covariance matrix
SCM,M - and Tyler estimators asymptotics
Applications: ANMF and MUSIC

III. Random Matrix Theory
Interest of RMT: A very simple example
Classical Results
Robust RMT
Applications to DoA estimation

IV. Regularized M -estimators and link to RMT
Motivations and definitions
Optimization and detection

V. Conclusions and perspectives

F. Pascal 3 / 98



I. Introduction
Motivations
Results

II. Estimation, background and applications

III. Random Matrix Theory

IV. Regularized M -estimators and link to RMT

V. Conclusions and perspectives



Motivations ...

Signal Processing applications

Application reality: only observations ⇒ Unknown parameters

Several SP applications require the covariance matrix estimation, e.g.
sources localization, STAP, Polarimetric SAR classification, radar
detection, MIMO, discriminant analysis, dimension reduction, PCA...

The ultimate purpose is to characterize the system performance, not
only the estimation performance ⇒ ROC curves, PD vs SNR, PFA,
MSE ...
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Motivations ...

Robustness: what happens when models turn to be not Gaussian
anymore?

Gaussian model ⇒ Sample Covariance Matrix

Outliers and other parasites

Mismodelling

Missing data

High dimensional problems

Massive data

Data size can be important...

... greater than the number of observations

Link with robustness.
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Why non Gaussian modeling?
(e.g. heterogeneous clutter)

Grazing angle Radar

Visible area

Shadows

Main lobes

Low grazing angle

Range bins

⇒ Impulsive Clutter

High Resolution Radar

⇒ Small number of scatters in the Cell Under Test (CUT)
⇒ Central Limit Theorem (CLT) is not valid anymore
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Radar signals amplitude - Gaussian or not?
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Figure: Failure of the OGD - Adjustment of the detection threshold -
K-distributed clutter with same power as the Gaussian noise

⇒ Bad performance of the OGD in case of mismodeling

⇒ Introduction of elliptical distributions

⇒ Introduction of robust estimates

Introduction Motivations F. Pascal 7 / 98



Motivations
Why CES and M-estimation? Examples in Image processing

Polarimetric SAR image (RGB)
3-dimensional complex pixels

Figure: Brétigny area - RAMSES system
(ONERA) - X-band - Resolution:
1.32m× 1.38m

Hyperspectral image
100-dimensional complex pixels

Figure: Indian Pines - m = 100
wavelengths
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Some insights

∗ Robust Estimation Theory

More flexible and adjustable models  CES distributions

Robust family of estimators  M -estimators

Regularized estimators

M -estimators statistical properties (complex case)

Statistical properties of M -estimators functionals (e.g. MUSIC
statistic for DoA estimation, ANMF detectors...)

Regularized Tyler Estimator (RTE) derivation and asymptotics
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Some insights
∗ (Robust) Random Matrix Theory
In many applications, the dimension of the observation m is large (HSI...)

⇒ The required number N of observations for estimation purposes needs
to be larger: N � m BUT this is not the case in practice! Even
N < m is possible

 New asymptotic regime: N →∞,m→∞ and
m

N
→ c ∈ [0, 1]

Extension of “standards” for M -estimators for particular case and for
general CES distribution.

Asymptotic distribution of the eigenvalues

Asymptotics for the RTE

Application to DoA estimation: robust G-MUSIC

Connections between Robust Estimation Theory and RMT
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Modeling the background
Complex elliptically symmetric (CES) distributions

Let z be a complex circular random vector of length m. z follows a CES
(CE(µ,Λ, gz)) if its PDF can be written

gz(z) = |Λ|−1hz((z− µ)HΛ−1(z− µ)), (1)

where hz : [0,∞)→ [0,∞) is the density generator and is such as (1)
defines a PDF.

µ is the statistical mean

Λ the scatter matrix

In general (finite second-order moment), M = αΛ where

α = −2ϕ′(0),

ϕ, the characteristic generator is defined through the characteristic
function cxof x by cx(t) = exp(itHµ)ϕ(tHΛt)
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Characterizing property

Unit complex m-sphere:

CSm , {z ∈ Cm | ‖z‖ = 1}

u (or u(m)) = r. v. with uniform distribution on CSm,

u ∼ U (CSm)

Theorem (Stochastic representation theorem)

z ∼ CE(µ,Λ, hz) if and only if it admits the stochastic representation

z =d µ +RAu(k)

where r. va. R ≥ 0, called the modular variate, is independent of u(k) and
Λ = AAH is a factorization of Λ, where A ∈ Cm×k with k = rank(Λ).
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Characterizing property

1 One-to-one relation with c.d.f FR(.) of R and characteristic generator
ϕ(.)

2 Ambiguity: both (R,A) and (c−1R, cA), c > 0 are valid stochastic
representations of z ⇒ constraint for identifiability issues

3 Distribution of quadratic form: if rank(Λ) = m, then

Q(z) , (z− µ)H Λ−1 (z− µ) =d Q

where Q , R2 is called the 2nd-order modular variate.
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Characterizing property

4 Random number generation

draw a random modular variate R from a distribution FR(.) and
u(k) from U (CSm).
set z =d µ +RAu(k) for a given µ ∈ Cm and A ∈ Cm×k.

5 Applications

In practice, R accounts for the amplitude fluctuations from one
observation to another (cf. example of low grazing angle).
Can model heavy tailed-distribution (e.g. for image processing).
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Examples
Compound Gaussian (CG) distributions

An important subclass of CES distributions, also called as

Spherically Invariant Random Vectors (SIRV) [Yao, 1973]

Scale mixture of normal distributions [Andrews and Mallows, 1974]

Compound Gaussian distributions

z ∼ CGm(µ,Λ, Fτ ) if it admits a stochastic CG-representation

z =d µ +
√
τn

where r. va. τ ≥ 0, with c.d.f. Fτ , called the texture, is independent of n,
with n ∼ CN (0,Λ), called the speckle.
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Some remarks
Comments:

Of course, it is a subclass of the CES!

R =
√
s with s ∼ Gam(1, k), one has n0 =d

√
su(k), with

n0 ∼ CN (0, I).

1 Covariance matrix exists if E[τ ] < +∞,

M = cov
(√
τn
)

=
√
τcov(n)

= σMΛ with σM = E[τ ]

2 Identifiability: Both (
√
τ ,n) and (a

√
τ ,n/a), ∀a > 0 leads to same

CG dist. for z

For proper identifiability, on has to impose a scale constraint:

τ , e.g. E[τ ] = 1

Λ, e.g. Tr(Λ) = m
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Examples
Student t-distribution and K-distribution

t-distribution with dof ν

CG: τ−1 ∼ Gam(ν/2, 2/ν), where ν > 0

CES: (1/m)R2 ∼ F2m,ν where Fa,b is the F -dist with dof a and b

ν = 1 =⇒ complex Cauchy dist.

ν →∞ =⇒ CN dist.

finite 2nd-order moment for ν > 2

K-distribution with shape parameter ν

CG: τ ∼ Gam(ν, 1/ν), where ν > 0

CES: closed-form PDF for Q

ν ↓ =⇒ heavy-tailed dist.

ν →∞ =⇒ CN dist.

E[τ ] = 1 =⇒ Λ = M
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Examples
Generalized Gaussian distribution

GG distribution with parameters s and η

CES: R2 =d G
1/s where G ∼ Gam(m/s, η), s, η > 0

PDF: fz(z) = cte |Λ|−1 exp
(
−(η zHΛ−1z)s

)
Complex analog of the exponential power family, also called Box-Tiao
distributions

Subclass of multivariate symmetric Kotz-type distributions

Case s = 1 =⇒ CN dist. Heavier tailed than normal for s < 1 and
lighter tailed for s > 1

s = 1/2 =⇒ generalization of Laplace dist.

Estimation, background and applications Modeling the background F. Pascal 20 / 98



Image analysis with GG distributions

The following results can be found in:

Image processing:

F. Pascal , L. Bombrun, J.-Y. Tourneret and Y. Berthoumieu,
”Parameter Estimation for Multivariate Generalized Gaussian
Distributions” Signal Processing, IEEE Transactions on, vol. 61, no.
23, pp. 5960-5971, 2013.

Images are filtered by a stationary wavelet ⇒ observed vector z contains
the realizations of the wavelet coefficients for each channel of the RGB
image.
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Image analysis with GG distributions

 

(a)
 

(b)
Figure: Images from the VisTex database. (a) Bark.0000 and (b) Leaves.0008.
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Image analysis with GG distributions

Table: Estimated MGGD parameters for the first subband of the Bark.0000 and
Leaves.0008 images.

Image η̂ ŝ Λ̂

Bark 0000 0.036 0.328

0.988 0.992 0.883
0.992 1.131 0.922
0.883 0.922 0.881


Leaves 0008 0.054 0.265

0.935 0.966 0.871
0.966 1.074 0.976
0.871 0.976 0.991


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Image analysis with GG distributions

 

(a)
 

(b)
 

(c)

 

(d)
 

(e)
 

(f)

Figure: Marginal distributions of the wavelet coefficients with the estimated
MGGD and Gaussian distributions of the first subband for the red, green and blue
channels of the Bark.0000 (a,b,c) and Leaves.0008 images (d,e,f).
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Estimating the covariance matrix

ML-estimators

CES PDF specified
⇒ PDF of R
⇒ PDF of τ

Let (z1, ..., zN ) be a N -sample ∼ CE(0,Λ, gz) of length m.

Λ̂ that minimizes the negative log-likelihood function

Ln(Λ) = N ln |Λ| −
N∑
n=1

ln gz(zHn Λ−1zn)

Solution to the estimating equation

Λ̂ =
1

N

N∑
n=1

ϕ(zHn Λ̂
−1

zn)znz
H
n

with ϕ(t) = −g′z(t)/gz(t).
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Estimating the covariance matrix

M-estimators

PDF not specified
⇒ MLE can not be derived
⇒ M -estimators are used instead

Let (z1, ..., zN ) be a N -sample ∼ CE(0,Λ, gz) of length m.

The complex M -estimator of Λ is defined as the solution of

VN =
1

N

N∑
n=1

u
(
zHn V−1N zHn

)
znz

H
n , (2)

Maronna (1976), Kent and Tyler (1991)

Existence
Uniqueness
Convergence of the recursive algorithm...
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under a set of assumptions

From Maronna (1976) (real case),

Hypotheses: (case where µ = 0).

Let ψ(s) = su(s) and K = sups≥0 ψ(s).

(H1) u is nonnegative, nonincreasing and continuous on [0,∞).

(H2) m < K <∞ and ψ nondecreasing and strictly increasing in the
interval where ψ < K.

(H3) Let PN (.) the empirical distribution of (z1, ..., zN ). It exists a > 0 s.t.
for each hyperplan H, dim(H) ≤ m− 1, PN (H) ≤ 1− m

K − a. (This
assumption can be strongly relaxed.)
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Examples of M-estimators

SCM:
u(r) = 1

Huber’s estimator
(M -estimator):

u(r) =

{
K/e if r <= e
K/r if r > e

Tyler Estimator
(Tyler, 1987;
Pascal, 2008):
u(r) = m

r

Remarks:

Huber = mix between SCM and Tyler

FP and SCM are“not” M -estimators

Tyler estimator is the most robust.

Tyler Estimator:

VN =
m

N

N∑
n=1

znz
H
n

zHn V−1N zn
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Estimating the covariance matrix

M-estimators

Let us set

V = E
[
u(z′V−1z) zz′

]
, (3)

where z ∼ CE(0,Λ, gz).

- (3) admits a unique solution V and V = σΛ = σ/αM where σ is
given by Tyler(1982),

- VN is a consistent estimate of V.

For any functional u (ensuring existence and uniqueness), VN is a
consistent estimate of both M and Λ (up to scale factors)
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Asymptotic distribution of complex SCM
The SCM (MLE for normal dist.) is defined as

ŜN =
1

N

N∑
n=1

znz
H
n

where zn are complex independent circular zero-mean Gaussian with
covariance matrix V.

√
N vec(ŜN −V)

d−→ CN (0,ΣW ,ΩW )

ΣW = (VT ⊗V) and ΩW = (VT ⊗V) K

Remarks:

Valid for Wishart distribution (up to scale 1/N)!

Wishart distribution =⇒ many interesting properties
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Asymptotic distribution of complex M-estimators

Theorem 1 (Asymptotic distribution of VN)
√
N vec(VN −V)

d−→ CN (0,Σ,Ω) ,

where CN is the complex Gaussian distribution, Σ the CM and Ω the
pseudo CM:

Σ = σ1(V
T ⊗V) + σ2vec(V)vec(V)H ,

Ω = σ1(V
T ⊗V) K + σ2vec(V)vec(V)T ,

where K is the commutation matrix.

with {
σ1 = a1(m+ 1)2(a2 +m)−2,
σ2 = a−2

2

{
(a1 − 1)− 2a1(a2 − 1) [2m+ (2m+ 4)a2] (2a2 + 2m)−2

}
,

and {
a1 = [m(m+ 1)]−1E

[
ψ2(σ|t|2)

]
,

a2 = m−1E[σ|t|2ψ′(σ|t|2)],

where σ is the solution of E[ψ(σ|t|2)] = m, where t ∼ CE(0, I, gz) and ψ(x) = xu(x).
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Asymptotic distribution of Tyler estimator
Tyler estimator is obtained for u(t) = m/t

M̂FP =
m

N

N∑
n=1

znz
H
n

zHn M̂−1
FPzn

Theorem 1 (Asymptotic distribution of M̂FP )
√
N vec(M̂FP −V)

d−→ CN (0,ΣFP ,ΩFP ) ,

where CN is the complex Gaussian distribution, ΣFP the CM and ΩFP

the pseudo CM:

ΣFP = m+1
m (VT ⊗V)− m+1

m2 vec(V)vec(V)H ,

ΩFP = m+1
m (VT ⊗V) K− m+1

m2 vec(V)vec(V)T ,

where K is the commutation matrix.
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Reminders and comments

General family of distributions =⇒ Model many real phenomenon

General family of CM estimators related OR NOT to the underlying
distribution

Common asymptotic distributions: differs from scale factors =⇒
highlight the tradeoff efficiency-robustness!

mis-modelling
non-Gaussian model
smaller scale factor (1 and 0) for the SCM

How to use this framework in practice ?
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An important property of complex M-estimators
Let VN an estimate of Hermitian positive-definite matrix V that
satisfies √

N (vec(VN −V))
d−→ CN (0,Σ,Ω) , (4)

with {
Σ = ν1V

T ⊗V + ν2vec(V)vec(V)H ,
Ω = ν1(V

T ⊗V) K + ν2vec(V)vec(V)T ,

where ν1 and ν2 are any real numbers.

e.g.

SCM M -estimators Tyler

ν1 1 σ1 (m+ 1)/m

ν2 0 σ2 −(m+ 1)/m2

... More accurate More robust

Let H(V) be a r-multivariate function on the set of Hermitian
positive-definite matrices, with continuous first partial derivatives and
such as H(V) = H(αV) for all α > 0, e.g. the ANMF statistic, the
MUSIC statistic.
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An important property of complex CM estimators

Theorem 2 (Asymptotic distribution of H(VN))

√
N (H(VN )−H(V))

d−→ CN (0r,1,ΣH ,ΩH)

where ΣH and ΩH are defined as

ΣH = ν1H
′(V)(VT ⊗V)H ′(V)H ,

ΩH = ν1H
′(V)(VT ⊗V) KH ′(V)T ,

where H ′(V) =

(
∂H(V)

∂vec(V)

)
.
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Some comments:

Perfect (but asymptotic) characterization of several objects
properties, such as detectors, classifiers, estimators...

H(SCM), H(M -estimators) and H(FP ) share the same
asymptotic distribution (differs from σ1 or m+1

m )

⇓

Link to the classical Gaussian case

Quantification of the loss involved by robust estimator
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Application: target detection
Problem statement

In a m-vector y, detecting a complex known signal s = αp
embedded in an additive noise z (with covariance matrix V) , can be
written as the following statistical test:{

Hypothesis H0: y = z yn = zn n = 1, . . . , N
Hypothesis H1: y = s + z yn = zn n = 1, . . . , N

where the zn’s are N ”signal-free” independent observations
(secondary data) used to estimate the noise parameters .

⇒ Neyman-Pearson criterion
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Detection: generalities

Detection test: comparison between the Likelihood Ratio Λ(y) and a
detection threshold λ :

Λ(y) =
py(y/H1)

py(y/H0)

H1

≷
H0

λ ,

λ is obtained for a given PFA (set by the user):

Probability of False Alarm (type-I error):

Pfa = P(Λ(y) > λ/H0)

Probability of Detection (to evaluate the performance):

PD = P(Λ(y) > λ/H1)

for different Signal-to-Noise Ration (SNR).
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Detection under Gaussian/non-Gaussian assumption

Gaussian case (OGD): if z ∼ CN (0,M) then

Λ(y) =
|pHM−1y|2

pHM−1p

H1

≷
H0

λg

with λg =
√
− ln(PFA) and pz(z) = 1

(π)m|M| exp
(
−zH M−1 z

)
.

Heterogeneous case (NMF):

Λ(y) =
|pHM−1y|2

(pHM−1p)(yHM−1y)

H1

≷
H0

λNMF

The False Alarm regulation can be theoretically done thanks to

λNMF = 1− PFA
1

m−1 .

This comes from a Beta distribution of the test.
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Generalities: M unknown ⇒ Adaptive detection

Gaussian model ⇒ ŜN =
1

N

∑N
n=1 znz

H
n

AMF test [1]

ΛAMF (y) =

∣∣∣pH Ŝ−1N y
∣∣∣2(

pH Ŝ−1N p
) H1

≷
H0

λAMF . (5)

[1] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, ”A CFAR
adaptive matched filter detector”, Aerospace and Electronic Systems, IEEE
Transactions on, vol. 28, no. 1, pp. 208-216, 1992.

Kelly test [2]

ΛKelly(y) =

∣∣∣pH Ŝ−1N y
∣∣∣2(

pH Ŝ−1N p
) (

N + yH Ŝ−1N y
) H1

≷
H0

λKelly . (6)

[2] E. J. Kelly, ”An adaptive detection algorithm”, Aerospace and Electronic
Systems, IEEE Transactions on, pp. 115-127, November 1986.
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CES distribution ⇒ ANMF

ANMF test (ACE, GLRT-LQ) [3,4]

ΛANMF (y, M̂) =
|pHM̂−1y|2

(pHM̂−1p)(yHM̂−1y)

H1

≷
H0

λANMF (7)

where M̂ stands for any estimators presented before: SCM, M -estimators,
Tyler estimator.

One has, conditionally to y !!, ΛANMF (M̂) = ΛANMF (α M̂) for
any α > 0.

[3] E. Conte, M. Lops, and G. Ricci, ”Asymptotically Optimum Radar Detection in
Compound-Gaussian Clutter”, Aerospace and Electronic Systems, IEEE Transactions on,,
vol. 31, pp. 617-625, April 1995.
[4] S. Kraut and L. L. Scharf, ”The CFAR adaptive subspace detector is a scale-invariant
GLRT”, Signal Processing, IEEE Transactions on, vol. 47, no. 9, pp. 2538-2541, 1999.
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Properties

The ANMF is scale-invariant, i.e.
∀α, β ∈ R , ΛANMF (αy, β M̂) = ΛANMF (y, M̂)

Its asymptotic distribution (conditionally to y) is known (thanks to
theorem 2)

Considering ΛANMF (y, M̂) conditionally to y, i.e. ΛANMF (M̂),
allows to directly apply theorem 2. Else see next slide!

It is CFAR w.r.t the covariance/scatter matrix, i.e. its distribution
does not depend on the covariance/scatter matrix

It is CFAR w.r.t the texture (if considering Compound-Gaussian
model)

CFAR = Constant False Alarm Rate
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Illustration of the CFAR properties

False Alarm regulation

100 101 102 103 104 105 106

10!3

10!2

10!1

100

PF
A

Gaussian
K!distribution
Student!t
Cauchy
Laplace

Detection threshold 

CFAR-texture property for the ANMF with Tyler's est.

Σ estimated, n=40, m=10
Σ known (NMF)

(a) CFAR-texture

100 101 102 103 104
10!3

10!2

10!1

100

PF
#

! = 0.01
! = 0.1
! = 0.5
! = 0.9
! = 0.99

:etection thresho=7 

CFAR-matrix property for the ANMF with the Tyler's est.

(b) CFAR-matrix

Figure: Illustration of the CFAR properties of the ANMF built with the Tyler’s
estimator, for a Toeplitz CM whose (i, j)-entries are ρ|i−j|
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Probability of false alarm

PFA-threshold relation of ΛANMF (ŜN) (Gaussian case, finite N)

Let (z1, ..., zN ) be a N -sample ∼ CN (0,M) with dimension m

Pfa = P(ΛANMF (y, ŜN ) > λ/H0) = (1− λ)a−1 2F1(a, a− 1; b− 1;λ)
(8)

where a = N −m+ 2 , b = N + 2 and 2F1 is the Hypergeometric function
defined as

2F1(a, b; c;x) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

xk

k!

[5] F. Pascal, J.-P. Ovarlez, P. Forster, and P. Larzabal, ”Constant false alarm rate
detection in spherically invariant random processes,” in Proc. of the European Signal
Processing Conf., EUSIPCO-04, (Vienna), pp. 2143-2146, Sept. 2004.
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Comments

Three possible approaches to characterize the performance:

1 Use the (very) poor approximation of the FA regulation of the NMF

2 Use the asymptotics of theorem 2 (but it is conditionally to the dist.
of y!) ⇒ a slight loss of performance

3 Combine the asymptotics of theorem 2 and the finite-distance result
on PFA-threshold...

From theorem 2, one has

PFA-threshold relation of ΛANMF (M -est.) for CES distributions

For N large enough and for any CES distributed noise, the PFA is still
given by (8) if we replace N by N/ν1.

The third one seems to provide more accurate results...
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Probabilities of false alarm for robust detection

From theorem 2, one has both results (ΛANMF denoted now Λ)

Pfa-threshold relation of Λ(M -est) for CES distributions

Pfa = (1− λ)a−1 2F1(a, a− 1; b− 1;λ),

where a = N/ν1 −m+ 2 , b = N/ν1 + 2 and 2F1 is the Hypergeometric
function.

Here, something is missing...

Pfa-threshold relation of Λ(M -est) for CES distributions
(conditionally to the dist. of y)

√
N (Λ(VN )− Λ(V))

d−→ N
(
0, 2 ν1Λ(V) (Λ(V)− 1)2

)
Then, integrate (numerically) over the dist. of y, see [6] for details

[6] F. Pascal and J.-P. Ovarlez, ”Asymptotic Properties of the Robust ANMF,” in Proc. of
ICASSP-15, (Brisbane, Australia), Apr. 2015.
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What is missing...

Theorem (Asymptotic distribution of M̂FP − ŜN)
√
Nvec(M̂FP − ŜN )

d→ CN (0,Σ,Ω)

where Σ and Ω are defined by

Σ =
1

m
MT ⊗M +

m− 1

m2
vec(M)vec(M)H ,

Ω =
1

m
(MT ⊗M)K +

m− 1

m2
vec(M)vec(M)T .

Remark:

Σ < ΣFP and Ω < ΩFP

m→∞ =⇒ 1/m→ 0 =⇒ Σ� ΣFP and Ω� ΩFP
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Result for the ANMF test

Theorem (Asymptotic distribution of Λ(M̂FP )−Λ(ŜN), conditionally
to the dist. of y

√
N(Λ(M̂FP )− Λ(ŜN ))y

d→ N (0,ΣT )

where ΣT is defined by

ΣT =
2

m
Λ(M)(Λ(M)− 1)2.

Remark: ΣT < ΣH and m→∞ =⇒ 1/m→ 0 =⇒ ΣT � ΣH

This theoretically justifies the use of relation (8)
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Simulations

Complex Huber’s M -estimator.

Figure 1: Gaussian context, here σ1 = 1.066.

Figure 2: K-distributed clutter (shape parameter: 0.1, and 0.01).
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Simulations: Probabilities of False Alarm

Complex Huber’s M -estimator.

Figure 1: Gaussian context, here σ1 = 1.066.

Figure 2: K-distributed clutter (shape parameter: 0.1).
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Tyler’s estimator: Gaussian context, n = 10, m = 3

PFA-threshold relation of ΛANMF (Tyler’s est.) for CES distributions

For n large and any elliptically distributed noise, the PFA is still given by
(8) if we replace N by N/m+1

m .
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MUltiple Signal Classification (MUSIC) method for
DoA estimation

K (known) direction of arrival θk on m antennas

Gaussian stationary narrowband signal with additive noise.

the DoA is estimated from N snapshots, (SCM, M - and Tyler
estimator).

zt =
K∑
k=1

√
pks(θk)yk,t + σwt = A(θ)yt + σwt

θ = (θ1, θ2, ...θK)T ,

A(θ) = (
√
p
1
s(θ1),

√
p
2
s(θ2), ...,

√
p
K

s(θK)) is the steering matrix

yt =
(
y1,t y2,t ... yK,t

)T
the signal vector,

wt stationary additive noise.
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M = E[zzH ] = A(θ)E[yyH ]A(θ)H + σ2I

which can be rewritten

M = E[zzH ] = ESDSEH
S + σ2EWEH

W .

where ES (resp. EW ) are the signal (resp. noise) subspace eigenvectors.
The MUSIC statistic is

H(M) = γ(θ) = s(θ)HEWEH
W s(θ), (M known)

H(M̂) = γ̂(θ) =

m−K∑
i=1

λis(θ)H êiê
H
i s(θ) = H(α M̂), (M unknown)

where λi (resp. êi) are the eigenvalues (resp. eigenvectors) of M̂.

This function respects assumptions of theorem 2

Estimation, background and applications Applications: ANMF and MUSIC F. Pascal 53 / 98



Simulation using the MUltiple Signal Classification
(MUSIC) method

The Mean Square Error (MSE) between the estimated angle θ̂ and the real
angle θ can then computed (case of one source).

A m = 3 uniform linear array (ULA) with half wavelength sensors
spacing is used,

Gaussian stationary narrowband signal with DoA 20◦ plus additive
noise.

the DoA is estimated from n snapshots, using the SCM, the Huber’s
M -estimator and the Tyler’s estimator.
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(b) K-distributed additive noise (ν = 0.1)

Figure: MSE of θ̂ vs the number N of observations, with m = 3.

Similar conclusions as for detection can be drawn...
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Interest of RMT: A very simple example...
Problem: Estimation of 1 DoA embedded in white Gaussian noise

zt =
√
ps(θ)yt + wt

where the wt’s are N independent realizations of circular white Gaussian
noise, i.e. wt ∼ CN (0, I).

Classical approach

ŜN =
1

N

N∑
t=1

wtw
H
t −→

N→∞
I

Then, MUSIC algorithm allows to estimate the DoA...

What happens when the dimension m is large?

ŜN =
1

N

N∑
t=1

wtw
H
t 6−→

m,N→∞
I

Then, MUSIC algorithm IS NOT the best way to estimate the DoA...
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Classical approach: N � m
e.g. STAP context, 4 sensors and 64 pulses, m = 256 and N = 104
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Figure: Empirical distribution for the eigenvalues of the SCM in the case of a
white Gaussian noise of dimension m = 256 for N = 104 secondary data
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What happens when the dimension m is large? (compared to N)
STAP context, 4 sensors and 64 pulses, m = 256 and N = 103

Marcenko-Pastur Law...
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Figure: Empirical distribution for the eigenvalues of the SCM in the case of a
white Gaussian noise of dimension m = 256 for N = 103 secondary data
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What happens when the dimension m is large? (compared to N)
STAP context, 4 sensors and 64 pulses, m = 256 and N = 500

Marcenko-Pastur Law...
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Figure: Empirical distribution for the eigenvalues of the SCM in the case of a
white Gaussian noise of dimension m = 256 for N = 500 secondary data
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Consequences

Bad assumptions =⇒ Bad performance
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Figure: MSE on the different DoA estimators for K = 1 source embedded in an
additive white Gaussian noise
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RMT - Classical results
Assumptions:

N,m→∞ and
m

N
→ c ∈ (0, 1) and ŜN =

1

N

N∑
i=1

ziz
H
i the SCM

(z1, ..., zN ) be a N -sample, i.i.d (i.e. E[z
(j)
i z

(l)
k ] = 0) with finite

fourth-order moment.

Remark: CES dist. do not respect this assumptions!
Thus one has:

1) F ŜN ⇒ FMP

where F ŜN (resp. FMP ) stands for the distribution of the
eigenvalues of ŜN (resp. the Marcenko-Pastur distribution) and ⇒
stands for the weak convergence.
The MP PDF is defined by

µ(x) =

{ (
1− 1

c

)
1x=0 + f(x) if c > 1

f(x) if c ∈ (0, 1]

with f(x) =
1

2πσ2

√
(c+ − x)(x− c−)

cx
1x∈[c−,c+] and c± = σ2 (1±√c)2.
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RMT - Classical results

Exploiting the MP dist for the SCM eigenvalues leads to a new MUSIC
statistic:

2) γ̂(θ) =

m∑
i=1

βis(θ)H êiê
H
i s(θ) is the G-MUSIC statistic (Mestre, 2008)

where

βi =


1 +

m∑
k=m−K+1

(
λ̂k

λ̂i − λ̂k
− µ̂k

λ̂i − µ̂k

)
, i ≤ m−K

−
m−K∑
k=1

(
λ̂k

λ̂i − λ̂k
− µ̂k

λ̂i − µ̂k

)
, i > m−K

with λ̂1 ≤ . . . ≤ λ̂m (resp. ê1, . . . , êm the eigenvalues (resp. the eigenvectors) of

ŜN and µ̂1 ≤ . . . ≤ µ̂m the eigenvalues of diag(λ̂)− 1
m

√
λ̂
√

λ̂
T

,

λ̂ = (λ̂1, . . . , λ̂m)T .

Remark: Contrary to MUSIC or Robust-MUSIC, all the eigenvectors are
used to compute G-MUSIC.
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Robust RMT
Assumptions:

N,m→∞ and
m

N
→ c ∈ (0, 1) and VN a M -estimator (with

previous assumptions)

(z1, ..., zN ) be a N -sample, i.i.d (!!!!!) with finite fourth-order
moment

Thus, it is shown that:

1) There exists a unique solution to the M -estimator fixed-point
equation for all large m a.s. The recursive algorithm associated
converges to this solution.

2) ‖φ−1(1) VN − ŜN‖
a.s.−−→ 0 when N,m→∞ and

m

N
→ c

where ‖.‖ stands for the spectral norm and φ such that φ(t) = t.u(t).

Remark: This result is similar to those presented in the classical
asymptotic regime (m fixed and N → +∞).
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Robust RMT

2) is the key result! Notably, it implies that

Classical results in RMT can be extended to the M-estimators

3) γ̂(θ) =

m∑
i=1

βis(θ)H êiê
H
i s(θ) is STILL the G-MUSIC statistic for the

M -estimators
where

βi =


1 +

m∑
k=m−K+1

(
λ̂k

λ̂i − λ̂k
− µ̂k

λ̂i − µ̂k

)
, i ≤ m−K

−
m−K∑
k=1

(
λ̂k

λ̂i − λ̂k
− µ̂k

λ̂i − µ̂k

)
, i > m−K

with λ̂1 ≤ . . . ≤ λ̂m (resp. ê1, . . . , êm the eigenvalues (resp. the eigenvectors) of

VN and µ̂1 ≤ . . . ≤ µ̂m the eigenvalues of diag(λ̂)− 1
m

√
λ̂
√

λ̂
T

,

λ̂ = (λ̂1, . . . , λ̂m)T .

Random Matrix Theory Robust RMT F. Pascal 64 / 98



Application to DoA estimation with MUSIC for
different additive clutter
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(a) Homogeneous noise (' Gaussian), 50
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Figure: MSE performance of the various MUSIC estimators for K = 1 source
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Resolution probability of 2 sources
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Figure: Resolution performance of the MUSIC estimators in homogeneous clutter
for 50 data of size 10
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Pros and Cons of these results
Advantages

Original results on robust RMT
Now, possibility of using robust estimators in a RMT context:
extension of classical RMT results such DoA estimation (done),
sources power estimation, number of sources estimation
(challenging problem), detection...
Great improvement: sources resolution, MUSIC statistic est.

Limitations
Assumption of independence, i.e. not CES dist:

zi =

 τ1 x
(1)
i

...

τm x
(m)
i

 instead of zi = τi

 x
(1)
i
...

x
(m)
i


where all the quantity are independent (means 6= random

amplitude on the different sensors).
Improvement on MSE is valid for the MUSIC statistic estimate
and NOT for the DoA estimate.
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Robust RMT under CES distributions

Previous results remain valid under CES distributions, i.e. where τi
are r.va. with unknown PDF (M -estimators, (Couillet, 2015)).

Technical condition: For each a > b > 0, one has

lim
t→∞

lim supN νN ([t,∞))

φ(at)− φ(bt)
−→ 0 . where νN = 1

N

∑N
i=1 δτi and

φ(t) = t.u(t).

Meaning: one has to control the queue of the dist. of τi.

Also valid for Tyler’s estimator (Zhang, 2016): φ(t) = m,∀t > 0.
More tight condition but same idea for the proof.
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Robust RMT under CES distributions

Results on the eigenvalues distributions of the M -estimators for CES

R. Couillet, F. Pascal, and J. W. Silverstein, “The Random Matrix Regime
of Maronna’s M -estimator with elliptically distributed samples”, JMVA,
vol. 139, 2015.

Ideas of the proofs? Break and discusssions.

Results on the eigenvalues distributions of the Tyler’s estimator for
CES

T. Zhang, X. Cheng, and A. Singer,“Marchenko-Pastur Law for Tyler’s
and Maronna’s M -estimators”, arXiv preprint arXiv:1401.3424, 2016.
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Robust RMT under CES distributions
Part II. Random Matrix Theory for robust estimation/ M-scatter estimator in the large random matrix regime 77/113

Simulation
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Figure: Histogram of the eigenvalues of 1
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i yiy

∗
i against the limiting spectral measure, L = 2, p1 = p2 = 1,

N = 200, n = 1000, Sudent-t impulsions. (a) SCM

Part II. Random Matrix Theory for robust estimation/ M-scatter estimator in the large random matrix regime 78/113

Simulation
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Figure: Histogram of the eigenvalues of Ĉn against the limiting spectral measure, for u(x) = (1 +α)/(α+ x)
with α = 0.2, L = 2, p1 = p2 = 1, N = 200, n = 1000, Student-t impulsions.(b) Student M -estimator

Histogram of the eigenvalues of the SCM and a M -estimator against the
limiting spectral measure, with 2 sources, p1 = p2 = 1,
m = 200, N = 1000, Student-t distributions
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Robust RMT under CES distributions

MSE on the DoA estimation
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(d) K-dist (ν = 1, homogeneous)

MSE vs SNR of the DoA estimation in the case of 2 sources (θ1 = 14◦ and
θ2 = 18◦), for Gaussian noise and K-distributed noise, where N = 100 and
m = 20.
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Robust RMT under CES distributions

MSE on the DoA estimation
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K-dist (ν = 0.11, heterogeneous)

MSE vs SNR of the DoA estimation in the case of 2 sources (θ1 = 14◦ and
θ2 = 18◦), for Gaussian noise and K-distributed noise, where N = 100 and
m = 20. Interest on sources resolution
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Robust RMT under CES distributions
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MSE vs the ration m/N of the DoA estimation in the case of 2 sources
(θ1 = 14◦ and θ2 = 18◦), for homogeneous K-distributed noise, where
SNR = 10dB and m = 20.
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Motivations

Some advantages

Regularized problem, with norm penalties (e.g. for sparsity)

Combined with M -estimators ⇒ robustness to outliers

May allow to include a priori informations

Case of small number of observations or under-sampling N < m:
matrix is not invertible ⇒ Problem when using M -estimators or
Tyler’s estimator!

It is an active research on this topic:
see the works of Yuri Abramovich, Olivier Besson, Romain Couillet,
Mathew McKay, Ami Wiesel...
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Regularized Tyler’s estimators (RTE)

Chen estimator

Σ̂C(ρ) = (1− ρ)
m

N

N∑
i=1

ziz
H
i

zHi Σ̂
−1
C (ρ)zi

+ ρI

subject to the constraint Tr(Σ̂C(ρ)) = m and for ρ ∈ (0, 1].

Originally introduced in (Abramovich, 2007)

Existence, uniqueness and algorithm convergence proved in (Chen,
2011)

Y. Chen, A. Wiesel, and A. O. Hero, ”Robust shrinkage estimation of
high-dimensional covariance matrices,” Signal Processing, IEEE Transactions on,
vol. 59, no. 9, pp. 4097-4107, 2011.

Remark: Constraint Tr(Σ̂C(ρ)) = m has two interests:

Allowing ρ to live in [0, 1]

Making the prove easier
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Regularized Tyler’s estimators

Pascal estimator

Σ̂P (ρ) = (1− ρ)
m

N

N∑
i=1

ziz
H
i

zHi Σ̂
−1
P (ρ)zi

+ ρI

subject to the no trace constraint but for ρ ∈ (ρ̄, 1], where
ρ̄ := max(0, 1−N/m).

Existence, uniqueness and algorithm convergence proved in (Pascal,
2013)

F. Pascal, Y. Chitour, and Y. Quek, ”Generalized robust shrinkage estimator and its
application to STAP detection problem,” Signal Processing, IEEE Transactions on,
vol. 62, pp. 5640-5651, Nov. 2014.

Σ̂P (ρ) (naturally) verifies Tr(Σ̂
−1
P (ρ)) = m for all ρ ∈ (0, 1]
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Regularized Tyler’s estimators

The main challenge is to find the optimal ρ!
According to the applications...MSE, detection performances...

One (theoretical) answer is given thanks to RMT in ...
R. Couillet and M. R. McKay, ”Large Dimensional Analysis and Optimization of Robust
Shrinkage Covariance Matrix Estimators,” Journal of Multivariate Analysis, vol. 131, pp.
99-120, 2014.

where it is also proved that

Both estimators have asymptotically (RMT regime) the same
performance (achieved for a different value of beta)

They asymptotically perform as a normalized version of the
Ledoit-Wolf estimator (similar to previous results).

O. Ledoit and M. Wolf, ”A well-conditioned estimator for large-dimensional covariance
matrices,” Journal of multivariate analysis , vol. 88, no. 2, pp. 365-411, 2004.
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Regularized Tyler’s estimators

Objective: Robust estimate of M = E[ziz
H
i ], for z1, . . . , zN ∈ Cm i.i.d.

with

zi =
√
τi M

1/2xi, xi has i.i.d. entries, E[xi] = 0, E[xix
H
i ] = I

τi > 0 random impulsions with E[τi] = 1.

m fixed and N →∞ (Classical asymptotics!)

OR

zi =
√
τi M

1/2xi, xi has i.i.d. entries, E[xi] = 0, E[xix
H
i ] = I

τi > 0 random impulsions with E[τi] = 1.

cm , m
N → c as m,N →∞

few data: m ∼ N .

Find “optimal” regularized parameter!
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RTE Asymptotics

Assumptions: m fixed and N → +∞

Let us set

Σ0(ρ) = m (1− ρ)E

[
zzH

zHΣ−10 (ρ)z

]
+ ρI

for ρ ∈ (ρ̄, 1], where ρ̄ := max(0, 1−N/m).

Then, for any κ > 0, one has

sup
ρ∈[κ,1]

∥∥∥Σ̂P (ρ)−Σ0(ρ)
∥∥∥ a.s−−−−−−−−−→

m fixed ,N→∞
0

Remark: Of course, Σ0(ρ) 6= M!!! What is Σ0(ρ)? ... it can be shown
that they share the same eigenvectors space.
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RTE Asymptotics
Characterization of Σ0(ρ)

Let us first denote Σ0 = Σ0(ρ).

Multiplying by M−1/2, one obtains:

M−1/2 Σ0 M−1/2 = m (1− ρ)E
[

xxH

xHM1/2 Σ−1
0 M1/2x

]
+ ρM−1

Let the eigenvalue decomposition of M−1/2 Σ0 M−1/2 = VDVH .

Then, m (1− ρ)E
[

xxH

xHDx

]
+ ρVHM−1V = D−1

=⇒E

[
xxH

xHDx

]
= diag(α1, . . . , αm) is diagonal implying Σ0 and M share the same

eigenvector space.

Lemma If D = diag(d1, . . . , dm), then αi are given by

αi =
1

2mm

1∏m
j=1 dj

F
(m)
D

(
m, 1, . . . , 2, 1, . . . , 1,m+ 1,

d1 − 1/2

d1
, . . . ,

dm − 1/2

dm

)

where F
(m)
D is the Lauricella’s type D hypergeometric function.
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RTE Asymptotics
Characterization of Σ0(ρ)

Denote by αi({dj}mj=1) = E
[
|xi|2
xHDx

]
. Then

m(m− 1)αi({di}mi=1) +
ρ

λi
=

1

di
,

where λi are the eigenvalues of M: M = V∆VH with ∆ = diag(λ1, . . . , λm) and
λ1 ≥ λ2 . . . ≥ λm.

Start from d
(0)
1 , . . . , d

(0)
m and compute iteratively

d
(t+1)
i =

1
ρ
λi

+m(1−m)αi(diag(d(t)))

until convergence. If d1,∞, . . . , dm,∞ are the obtained values, then...

Set si,∞ = λi di,∞, Then,

Σ0 = V diag(s1,∞, . . . , sm,∞)VH .
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RTE Asymptotics

Assumptions: m fixed and N → +∞

Similarly to M -estimators, one can establish a CLT:

Theorem 1 (Asymptotic distribution of Σ̂P (ρ))
√
N vec(Σ̂P (ρ)−Σ0(ρ))

d−→ CN (0,M1,M2) ,

where CN is the complex Gaussian distribution, M1 the CM and M2 the
pseudo CM.
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RMT Asymptotic Behavior

Theorem (Asymptotic Behavior (Couillet-McKay, 2014))

For ε ∈ (0,min{1, c−1}), define R̂ε = [ε+ max{0, 1− c−1}, 1].

Then, as m,N →∞, m/N → c ∈ (0,∞),

sup
ρ∈R̂ε

∥∥∥Σ̂P (ρ)− S̃m(ρ)
∥∥∥ a.s.−→ 0

with

S̃m(ρ)=
1

γ(ρ)

1− ρ
1− (1− ρ)c

1

N

N∑
i=1

M
1
2 xix

H
i M

1
2 + ρI

and γ(ρ) unique positive solution to equation

1 =
1

m
Tr
(
M
(
ργ(ρ)I + (1− ρ)M

)−1)
.

Moreover, ρ 7→ γ(ρ) continuous on (0, 1].
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Asymptotic Model Equivalence

Theorem (Model Equivalence (Couillet-McKay, 2014))

For each ρ ∈ (0, 1], there exist unique ρ ∈ (max{0, 1− c−1}, 1] such that

S̃m(ρ)

1
γ(ρ)

1−ρ
1−(1−ρ)c + ρ

= (1− ρ)
1

N

N∑
i=1

M
1
2 xix

∗
iM

1
2 + ρI.

Besides, (0, 1]→ (max{0, 1− c−1}, 1], ρ 7→ ρ is increasing and onto.

Estimator behaves similar to impulsion-free Ledoit-Wolf estimator

About uniformity: Uniformity over ρ essential to find optimal values
of ρ.

S̃m is unobservable!
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Context
Hypothesis testing: Two sets of data

Initial pure-noise data: z1, . . . , zN , zn =
√
τn M1/2xn as before.{

Hypothesis H0: y = z yn = zn n = 1, . . . , N
Hypothesis H1: y = s + z yn = zn n = 1, . . . , N

with z =
√
τ M1/2x, s = αp, p ∈ Cm deterministic known, α

unknown.

GLRT detection test:

Tm(ρ)
H1

≶
H0

Γ

for some detection threshold Γ where

Tm(ρ) ,
|yHΣ̂

−1
P (ρ)p|√

yHΣ̂
−1
P (ρ)y

√
pHΣ̂

−1
P (ρ)p

.
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Context

Originally found to be Σ̂P (0) but

only valid for m < N

ρ ≥ 0 can only bring improvements.

Basic comments:

For Γ > 0, as m,N →∞, m/N → c > 0, under H0,

Tm(ρ)
a.s.−→ 0.

⇒ Zero false alarm, trivial result.

Non-trivial solutions for Γ = γ/
√
m, γ > 0 fixed.
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Objectives

Objective: For finite but large m,N , solve

ρ? = argminρ
{
P
(√
mTm(ρ) > γ

)}
.

Several steps:

for each ρ, central limit theorem to evaluate

lim
m,N→∞
m/N→c

P
(√
mTm(ρ) > γ

)
(very involved due to intricate structure of Σ̂P )

find minimizing ρ

estimate minimizing ρ
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Main results

Theorem (Asymptotic detector performance (Couillet-Pascal, 2015))

As m,N →∞ with m/N → c ∈ (0,∞),

sup
ρ∈Rκ

∣∣∣∣P (Tm(ρ) >
γ√
m

)
− exp

(
− γ2

2σ2m(ρ)

)∣∣∣∣→ 0

with ρ 7→ ρ aforementioned mapping and σ2m(ρ) ,

1

2

pHMQ2
m(ρ)p

pHQm(ρ)p · 1
m Tr

(
MQm(ρ)

)
·
(
1− c(1− ρ)2f(−ρ)2 1

N Tr
(
M2Q2

m(ρ)
))

with Qm(ρ) , (I + (1− ρ)f(−ρ)M)−1.

Limiting Rayleigh distribution (weak convergence to Rayleigh Rm(ρ))
Remark: σm and ρ not function of γ

⇒ There exists uniformly optimal ρ.
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Simulation
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Figure: Histogram distribution function of the
√
mTm(ρ) versus Rm(ρ), m = 20,

N = 40 p = m−
1
2 [1, . . . , 1]T , M Toeplitz from AR of order 0.7, ρ = 0.2.
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Simulation
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Figure: Histogram distribution function of the
√
NTm(ρ) versus Rm(ρ), m = 100,

N = 200 p = m−
1
2 [1, . . . , 1]T , M Toeplitz from AR of order 0.7, ρ = 0.2.
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Empirical estimation of optimal ρ
Optimal ρ depends on unknown M. We need:

empirical estimate σm(ρ)

minimize the estimate

prove asymptotic optimality of estimate.

Theorem (Empirical performance estimation (Couillet-Pascal, 2015))

For ρ ∈ (max{0, 1− c−1m }, 1), let

σ̂2m(ρ) ,
1

2

1− ρ · pHΣ̂
−2
P (ρ)p

pHΣ̂
−1
P (ρ)p

(1− cm + cmρ) (1− ρ)
.

Also let σ̂2m(1) , limρ↑1 σ̂2m(ρ).
Then

sup
ρ∈Rκ

∣∣σ2m(ρ)− σ̂2m(ρ)
∣∣ a.s.−→ 0.
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Final result

Theorem (Optimality of empirical estimator (Couillet-Pascal, 2015))

Define

ρ∗
m

= argmin{ρ∈R′κ}
{
σ̂2m(ρ)

}
.

Then, for every γ > 0,

P
(√

mTm(ρ∗
m

) > γ
)
− inf
ρ∈Rκ

{
P
(√
mTm(ρ) > γ

)}
→ 0.
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Simulations
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Figure: False alarm rate P (Tm(ρ) > Γ) for m = 20 and m = 100,

p = m−
1
2 [1, . . . , 1]T , Mij = 0.7|i−j|, cm = 1/2.
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Analogous results can be obtained under H1 (more useful!).

A. Kammoun, R. Couillet, F. Pascal, and M.-S. Alouini, “Optimal Design of the

Adaptive Normalized Matched Filter Detector,” Information Theory, IEEE

Transactions on (submitted to), 2016. arXiv:1501.06027
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Figure: ROC curves for non-Gaussian clutters when m = 250 (STAP application
Na = 10, Np = 25), N = 250, fd = 0.6
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Conclusions and Perspectives

Conclusions

Derivation of the complex M -estimators asymptotic distribution,
the robust ANMF and the MUSIC statistic asymptotic
distributions.
In the Gaussian case, M -estimators built with σ1N data behaves
as SCM built with N data (i.e. slight loss of performance in
Gaussian case).
Better estimation in non-Gaussian cases.
Extension to the Robust RMT and derivation of the Robust
G-MUSIC method.
Shrinkage M -estimators: one more degree of freedom (for Big
data problems, robust methods...)

Conclusions and perspectives F. Pascal 95 / 98



Conclusions and Perspectives

Perspectives

Low Rank techniques for robust estimation

Robust estimation with a location parameter (non-zero-mean
observation): e.g. Hyperspectral imaging

Second-order moment in RMT

Asymptotics for regularized robust estimators

RMT analysis for regularized robust estimators

Conclusions and perspectives F. Pascal 96 / 98



References and thanks to...

my co-authors:

Yacine Chitour Abla Kammoun Romain Couillet Jack Silverstein

and many inspiring people working in this field
Yuri Abramovich, Olivier Besson, Ernesto Conte, Antonio De Maio, Alfonso Farina,
Fulvio Gini, Maria Greco, Shawn Kraut, Jean-Philippe Ovarlez, Louis Scharf, Ami
Wiesel . . .

List of references

Conclusions and perspectives F. Pascal 97 / 98



Y.I. Abramovich and O. Besson.
Regularized covariance matrix estimation in complex elliptically
symmetric distributions using the expected likelihood approach-part 1:
The over-sampled case.
Signal Processing, IEEE Transactions on, 61(23):5807–5818, 2013.

YI Abramovich and Nicholas K Spencer.
Diagonally loaded normalised sample matrix inversion (LNSMI) for
outlier-resistant adaptive filtering.
In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on, volume 3, pages 1105–1108. IEEE, 2007.

O. Besson and Y.I. Abramovich.
Regularized covariance matrix estimation in complex elliptically
symmetric distributions using the expected likelihood approach-part 2:
The under-sampled case.
Signal Processing, IEEE Transactions on, 61(23):5819–5829, 2013.

Olivier Besson and Yuri I Abramovich.

Conclusions and perspectives F. Pascal 97 / 98



Invariance properties of the likelihood ratio for covariance matrix
estimation in some complex elliptically contoured distributions.
Journal of Multivariate Analysis, 124:237–246, 2014.

Yilun Chen, Ami Wiesel, and Alfred O Hero.
Robust shrinkage estimation of high-dimensional covariance matrices.
Signal Processing, IEEE Transactions on, 59(9):4097–4107, 2011.

R. Couillet and F. Pascal.
Robust M -estimator of scatter for large elliptical samples.
In IEEE Workshop on Statistical Signal Processing, SSP-14, Gold
Coast, Australia, June 2014.

R Couillet, F Pascal, and J W Silverstein.
A Joint Robust Estimation and Random Matrix Framework with
Application to Array Processing.
In IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP-13, Vancouver, Canada, May 2013.

R Couillet, F Pascal, and J W Silverstein.

Conclusions and perspectives F. Pascal 97 / 98



Robust M -Estimation for Array Processing: A Random Matrix
Approach.
Information Theory, IEEE Transactions on (submitted to), 2014.
arXiv:1204.5320v1.

R Couillet, F Pascal, and J W Silverstein.
The Random Matrix Regime of Maronna’s M -estimator with
elliptically distributed samples.
Journal of Multivariate Analysis (submitted to), 2014.
arXiv:1311.7034.

Romain Couillet and Matthew R McKay.
Large Dimensional Analysis and Optimization of Robust Shrinkage
Covariance Matrix Estimators.
arXiv preprint arXiv:1401.4083, 2014.

Olivier Ledoit and Michael Wolf.
A well-conditioned estimator for large-dimensional covariance
matrices.
Journal of multivariate analysis, 88(2):365–411, 2004.

Conclusions and perspectives F. Pascal 97 / 98



F. Pascal and Y. Chitour.
Shrinkage covariance matrix estimator applied to STAP detection.
In IEEE Workshop on Statistical Signal Processing, SSP-14, Gold
Coast, Australia, June 2014.

F. Pascal, Y. Chitour, and Y. Quek.
Generalized robust shrinkage estimator and its application to STAP
detection problem.
Signal Processing, IEEE Transactions on (submitted to), 2014
arXiv:1311.6567.

Ilya Soloveychik and Ami Wiesel.
Non-asymptotic Error Analysis of Tyler’s Scatter Estimator.
arXiv preprint arXiv:1401.6926, 2014.

Ami Wiesel.
Unified framework to regularized covariance estimation in scaled
Gaussian models.
Signal Processing, IEEE Transactions on, 60(1):29–38, 2012.

Teng Zhang, Xiuyuan Cheng, and Amit Singer.

Conclusions and perspectives F. Pascal 97 / 98



Marchenko-Pastur Law for Tyler’s and Maronna’s M -estimators.
arXiv preprint arXiv:1401.3424, 2014.

Conclusions and perspectives F. Pascal 98 / 98



Thank you for your attention!

Questions?
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