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@ Tensors accommodate such data naturally as multi-way arrays. Tensor
decompositions of multilinear models provide a unifying framework for
multidimensional data analysis with simplified notations and algebras.

@ Sparsity constraints can be used
for accurate signal recovery (e.g. compressed sensing) or
to eliminate unnecessary redundant features of modern data sets (e.g.
financial data, DNA micro arrays, network traffic flows, fMRIs).
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Outline

@ High-dimensional Multi Aspect data
Neuroimaging, Remote Sensing, Chemometrics, Environmetrics,
Network Data, Internet Data, Data collected by mobile terminals

@ Tensors accommodate such data naturally as multi-way arrays. Tensor
decompositions of multilinear models provide a unifying framework for
multidimensional data analysis with simplified notations and algebras.

@ Sparsity constraints can be used
for accurate signal recovery (e.g. compressed sensing) or
to eliminate unnecessary redundant features of modern data sets (e.g.
financial data, DNA micro arrays, network traffic flows, fMRIs).

@ Robustness ensures the resistance to heavy-tailed errors or outliers that
appear commonly in high-dimensional data, improving data analyses.
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Introduction to Tensors

Tensors

@ A tensor A of order d: a d-way array with d indices A € R™*"*"d
represents a multi-linear operator with coordinates A;, ;.
( or A(ib e )id))
@ Low-order tensors: scalar a (order-0 tensor),
vector a (order-1 tensor),
matrix A (order-2 tensor)

@ Example: Social Network Analysis

Data in three modes: time, author, keyword (order-3 tensor)
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Introduction to Tensors

Terminologies

@ Mode: number of dimensions, also known as ways or orders
@ Fiber: the higher order analogue of matrix rows and columns, obtained
by fixing all but one index

Ly

L
f
l':ELﬁ OO

eg. Al j, k), Ali,: k), Ali,j,:) for a third-order tensor A
@ Slice: two-dimensional sections of a tensor, defined by fixing all but
two indices

eg. Ali,::)

AL, A k) for a third-order tensor A

B
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Introduction to Tensors

Tensor Unfoldings

@ Unfolding (= Flattening, Matricizing): Converting a Tensor to a
Matrix

@ Mode-k unfolding: mode-k fibers of A € R % are assembled to
produce an ny by N/n, matrix where N=n;--- ngand k=1,...d.

13l
244
Eg. Let A=F
Three mode-k unfoldings are
1 3 5 7]
Aw = 2 4 6 8
1 2 5 6]
A=13 4 7 g
1 2 3 4]
An=15 6 7 8

Introduction to Tensors

Tensor Unfoldings

@ Different people use different ordering of the columns for the mode-k
unfolding. In general, the specific permutation of columns is not
important so long as it is consistent across related calculations.

@ ‘Vectorization' : vec operation

Turn matrices into vectors by stacking columns
Turn tensors into vectors by stacking mode-1 fibers
E.g. (continued)

vec(.A)

WX ~NO 1 BWN R
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Introduction to Tensors

@ The inner product of A, B € R™M*"2X"3 jg

m m n3

<A B>= Z Z Z ajibjix = vec(A) Tvec(B)

i=1 j=1 k=1

@ Frobenius norm :

[AlF =v<.A4,A4>
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Introduction to Tensors

Tensor Mode-n Multiplication

@ Tensor times Matrix
For A € R/*/*K B e RM*J and c e R/,

X=Ax;B (eR"MK
y I

X2 =BA(y

Ximk = _ jjicbmj

J

@ Tensor times Vector
X=A4 X; ¢ (e RV

Xjk = Z Ak <
i
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Matrix Products

Specially Structured Tensors (3-way tensors)

@ o denotes outer product: acb =ab’, forac R/, b e R/, c € RX. o Kruskal Tensor : X e RI**K v e RR
E.g. aoboc(e RIX/XK) . (aoboc)j = ajbjck

: IxJ KxL. R
@ Kronecker Product of matrices A € R'*7 and B € R"*%: X =[y.A,B,C] = ZYrar ob, oc,.

allB 3.125 alJB r=1

3.215 3.225 8.2JB / J K .

AoB= _ ) _ where a € R', b € R” and ¢ € R" form the unit-norm column vectors
: L : of A e RI*R B € R/*R and C € RX*R
a,lB a/QB ce a/JB /(:1 %y %R
[ ] [ ] C———
o Khatri-Rao product of matrices A € R'*® and Be R”*Fisa IJx R % ~ R R >
matrix:A@B:[a1®b1 aR®bR].

In the vector case, a @ b = vec(ba’).

Robust and sparse estimation of tensor decompositions Visa Koivunen Robust and sparse estimation of tensor decompositions Visa Koivunen

Introduction to Tensors Introduction to Tensors

Rank of a tensor Specially Structured Tensors (3-way tensors)

@ Tucker Tensor : X € R!*xJxK

@ rank(X’) : the smallest number of rank-one tensors that sum to X. P Q R
Eg Ifac R be R/, c eRX, thenaobocisa rank-1 tensor. X =[GABCl=Gx1Ax:Bx3C= ZZZqurapobqocr
E.g. If a tensor X has a minimal representation as p=1q=1 r=1
noror where A € R'*P, B € R/*®, and C € R¥*R are the factor matrices
vec(X) = Z Z Z ojk(ck © bj © a;) (ATA=1,B'B=1,C"C =1) and G € RP*@<F is the core tensor.
i=1 j=1 k=1 L7
then rank(X') = o p B

@ No known method to determine the rank of a specific given tensor.

@ The rank of a particular tensor over the real field may be different
from its rank over the complex field.

@ Kruskal tensor is a special case of Tucker tensor where the core tensor
is superdiagonal and P = Q = R.
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Rank-1 Tensors Tensor decompositions

Recall that (ao b o ¢ = aibjc for a € R/, b € R’, and ¢ € RX. approximate a tensor by a low-rank set of factors along each tensor mode
@ CANDECOMP = Canonical Decomposition (Carrol and Chang, 1970)
(1] [arbic] o PARAFAC = Parallel Factors (Harshman, 1970)
V11 arbicy o CANDECOMP / PARAFAC (CP) decomposition
1 b
a c1 Y121 arza R
= ec = = =c®@b®a
Y L’J ’ b, ’ {CJ & veeld) : : ohe X ~[v;A,B,C] =) v,aoboc,.
Y132 aibsc r—1
| V232 | |a2b3 | @ Tucker decomposition (Tucker, 1966) : Three-mode factor analysis,
Three-mode PCA, or Orthogonal array decomposition
P Q R
. a1b1 (o] a1b2C1 a1b3c1 a1b1 (9] a1b2C2 alb3C2
Yo = Lzb1C1 acbacy acbzcy axbicy azhocy axbzco *~[9:A.B,C = Z1 Z1 Zlgpqrap “bacer
p=1g=1r=
a-(cob)’
= Ll’EC@@b%T} =a®(cab)’ Not Unique!
@ HOSVD, HOOI, HOPM,...
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Tensors in matrix form

Uniqueness of decompositions

o Kruskal Tensor : X € R/*/xK

R @ Tucker is NOT unique. Let U be an P x P orthogonal matrix.

X = Yrar®(Cr®br)T:Adiag(Yr)(C®B)T
W Zl X ~[G;A,B,C] = Gx1Ax2Bx3C = (Gx1UT)x1(AU) x,B x3C

X =Br(CoA)T

X ~ AGpy(CoB)T = AUUTGp(CoB)T
X3 =CrBo AT where T is diag(y)

@ CP is often unique.

vec(X)=(COBO®A)Y Assume that CP decomposition is exact.
@ Tucker Tensor : X =G x1 A x5 B x5 C € RI*/*K Sufficient condition for uniqueness (Kruskal, 1977):
Xp) =AGy(CoB)T 2R+2 < ka+ Kg+Kc

_ T
Xz =BGp(CaoA) where k4 = k-rank of a matrix A = max number k such that any k

T . .
X3 =CG (B A) columns are linearly independent.
vec(X) = (C® B ® A)vec(G)
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Solving for Tucker Higher Order Orthogonal Iterations (HOOI)

For X ~ [G; A, B, C] Tucker-Alternating Least Squares : Successively solve for each component

Given that A, B, C are orthonormal, the optimal core is while fixing others.
@ Initialize P, Q, R. Calculate A, B, C via HOSVD.

@ Repeat until converged...
-A is P left leading singular vectors for X(1,(C @ B).

G=[x;A7,B",C’]

X —[G;A,B,C]|? = |X|*—2 < X,[G;A,B,C] > +| G| -B is Q left leading singular vectors for X((C @ A).
_ ||X||2 . HgHz -C is R left leading singular vectors for X3(B @ A).
@ Solve for the core:
If B and C are fixed, then we can solve for A as follows: G=[X;AT,B7,C"]
11X, AT, BT,C7]| = ||[[ATX(1)(C o B)]| Kroonenberg & De Leeuw, Psychometrika, 1980

Optimal A is P left leading singular vectors for X(1)(C @ B).
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HOSVD (Higher Order SVD) CANDECOMP / PARAFAC (CP) decomposition
De Lathauwer, De Moor, & Vandewalle, SIMAX, 1980 approximates a tensor X € R!*/*K by a predicted tensor X' consisting of
The HOSVD of a tensor X involves computing the matrix SVDs of its a sum of rank-1 tensors: R
modal unfoldings X1y, ..., X (4)- X —vAB.C] 2 b
For X ~# G x1 A x2 Bx3C =[rA,B,C] ;y,aro rocr
Q@ A is P left leading singular vectors for Xq. Thus, we model & as
@ B is Q left leading singular vectors for Xy). R
© C is R left leading singular vectors for X 3. X = Zerar obroc, +£ (1)
%]
Gg=[x;AT, BT, CT] where a, € R/, b, € R’ and ¢, € RX for r = 1,..., R form the unit-norm

column vectors of A € R/*F B e R/*R, and C € RX*K and the tensor

HOSVD: N imal f initialization for Tucker-AL .
oS ot optimal but often used as an initialization for Tucker-ALS £ € RI*IXK contains the error terms.

algorithm . L
The core is NOT in general diagonal. GOAL: to minimize
Unlike the matrix SVD, HOSVD cannot be expressed as a sum of a few X — X||F = X1 — X(k)HF

orthogonal outer-product terms.
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CP decomposition ALS for CP decompositions

The model (1) can be expressed in a matrix form by unfolding the tensor

into a matrix along any of the three modes.

Unfolding the tensor X along the first mode yields a | x JK-matrix

denoted as X (1) so that the equivalent representation of (1) is Q Initialize B and C by B and C

QO A=X1Z(Z"2) 7 where Z=C o B

_ T N
X = AT(CoB)' + Eq), (2) o B = X(Q)Z(ZTZ)fl, where Z=Co A
where ' = diag(y) and E(y) denotes the unfolded | x JK matrix of €. QC= X(3)Z(ZTZ)*1, where Z=B o A
Similarly, © Repeat steps 2—4 until the relative change in fit is small.
X(z) =Blr(CeoA) Ty E(z),
X3 = CrBoA) T4 Egs)

Introduction to Tensors (Sparse) Regularization of Tensor decompositions

The Alternating Least Squares (ALS) for CP decompositions Sparsity for Tensors

) . , generally means that only a few entries are non-zero.
Consider the case that B and C are fixed and that y,’s are the scales of

the col fA ie, a, N it vectors, but y, = _ Two notions of Sparsity: _
€ columns o ., a,'s are no-longer unit vectors, but v, = [|a| @ The considerable number of data elements are zero or close to zero in
: : their relative magnitude.
min | X — [v; A, B,C]|* = min||Xq) ~A(COB)T?  (3) e e | | -
A A @ In regularization methods (e.g. ridge regression, LASSO), sparsity is
of which the LS solution is used for the estimated regression parameters that are either shrunk
A — Xy(C o B)((CTC) « (BTB))f towards zero or put to zero by increasing the penalty of model
complexity.

with 1 denoting the Moore-Penrose inverse.
Note that (C®B)T(C ® B) = (BTB) * (C7C) where  denotes pointwise
multiplication.

Relation of two notions: The underlying sparsity of tensor data naturally
implies that factor matrices of a decomposed tensor are sparse as well.
Regularization methods successfully estimate tensor factors compared to

- ALS idea: Solve for each factor in turn, leaving all the others fixed. the usual tensor estimation based on the least squares.
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Regularization methods

Sparse Regularization methods

@ Ridge Regression (Tikhonov regularization): A. E. Hoerl and R. W.
Kennard, 1970
Let Z = C © B for brevity in updating A fixing the others fixed.
The minimization in (3) simplifies to mina || X1 — AZT|j3.
The Ridge Regression in our context can be formulated

We introduce (sparse) regularization methods for tensor decompositions
which are useful for dimensionality reduction, feature selection, data
compression, data visualization as well as signal recovery.

A= RR(X(y),Z,\) = arg mAin X1 —AZT3+A|A3. (4 o CP - Alternating Ridge Regression (CP-ARR)
@ CP - Alternating LASSO
@ LASSO (Least Absolute Shrinkage and Selection Operator): o Sparse HOSVD

R. Tibshirani, 1996
To obtain sparse solutions, we solve for A using {, — {1 criterion
function instead of {2 criterion in (4):

@ Sparse HOOI

A= LASSO(X(},Z,A) = arg mAin X1y —AZT[3+AlAL
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Estimation of the penalty parameter A Initializations for tensor decomposition algorithms

@ The high level shrinkage (HLS) estimator: A = %Zle d?,
where d > dy > -+ > dgr > 0 are the singular values of Z.

. . A Most of the tensor decomposition algorithms heavily depend on good
In the ridge regression A = JK

initializations. (Kroonenberg, 2008)
@ Bayesian information criteria (BIC):

@ We propose the CP alternating ridge regression (CP-ARR) to provide
BIC(A) = NIn6? +df(A) - In N (5) good starting values taking advantage of sparsity.
The CP-ARR can be a stand-alone method when the underlying
structure of tensor data demands shrinkage with nonzero values
instead of sparsity with many zero values.

where N = JK is the number of columns in Xy,
62 = %HX(l) - AZTH% is the average squared residuals.

Degrees of freedom : df(A) =/ - Tr{Hy} =1 Zle c/jz(c/j2 +A)1

where Hy = Z(ZT Z + AI) 1Z7 denotes the “hat matrix" @ With such good starting values the CP alternating LASSO method
A= :

shows highly improved performance compared to the conventional

The BIC penalty parameter estimate of A: decomposition algorithms.
A= in BI
A =arg Jmin C(A) (6)

where A, is a grid of nvalues A, 1 <Ap 0 <+ < A1.< Ao
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Robust tensor decompositions Robust CP decompositions

@ Vorobyov et al., 2005; Chi & Kolda, 2011: (LAD) Let X = X(y) in (3).

m n
@ Qutliers often occurring in high-dimensional data indicate some Q T T
L i e . L(ABC = [|X—AZ 1= |x--—z-a-|.
deviation from the model assumptions and add difficulty in data (4, B,C) = | ;JZI v
analysis.

Note: Li-loss is not bounded!

@ Tensor decompositions hased on least squares are highly sensitive to : ) . :
P d shly @ We propose an M-estimation type objective function:

outliers or heavy-tailed errors resulting in biased estimates.
-
7z -

. . . i —zTa:
@ Surprisingly, the use of robust estimators has been largely neglected in Q,(A, B, C) Zazz ( ] 6-J ,)) (7)
the tensor community. i
Other than some work in the medical imaging, where G; is a preliminary robust scale estimate and Huber's p-function
robust tensor factorization studies are found in defined as
Vorobyov et al., 2005; Pang and Yuan, 2010; Chi and Kolda, 2011. (@) %e{ for le| < k ®)
Pkle) =
kle| — k2, for el > k
with a tuning constant k.

Robust Tensor Esti Robust Tensor Esti

Robust Error Measure Robust and Sparse(regularized) Tensor Decompositions

@ Least Absolute Deviations (LAD): For the regression parameter
B =(P1,...,Bp), the absolute value loss function is

- Z r(B)] We propose novel tensor decomposition methods that enjoy both the
B properties of sparsity and robustness to outliers.
@ Least Trimmed Squares Regression (LTS): Rousseeuw (1984) _
Let {|r;,(B)[} denote the set of ordered absolute values of the o CP Alternating LAD + LASSO (CPA-LAD LASSO)

residuals. The LTS estimator is found by minimizing the sum of o CP Alternating Ridge M-Regression (CPA-RMR)
squared residuals over a subset of h observations @ CP Alternating LTS + LASSO

R h @ CP Alternating Tukey + LASSO
Burs =min ) _|r;(B)P
j=1

@ Tukey Loss Function

p(r(B)) = min{L, (1 — (r(B)/c)*)%)

where ¢ = 3.4437 attaining 85% of efficiency-at normal distribution.
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CP Alternating LAD-LASSO METHOD Selection of the shrinkage parameter
@ Objective function for Robustness and Regularization: @ Bayesian information criteria (BIC):
mooon . BIC(A) =2NIn6 + w - df(A) - In N (11)
> {2 =z ail+Mlaill | +A2lBlL + Al Cll.
=1 j=1 where N = /- J- K, w(= v/2) a weight assigned by the user,
. and G is a scale estimate of the residuals.
The minimum A = (4; --- &,,)" can be found by ) )
64 = ave,-lj{r,-,} for CPA-LASSO,
_ n - 6 = ave; j{|r;[} for CPA-LADLASSO,
aj = min { D bg—zal+ ?\1||a||1} (9) 62 = 1.4286 - median; j{|r;|} for CPA-RMR.
j=1
_ . @ Degrees of freedom of the model df(A) :
for i=1,...,m, when B and C are fixed. sum of the number of non-zero elements in factor matrices (A, B, ).

Robust Tensor Esti Robust Tensor Esti

CP Alternating Ridge M-Regression (CPA-RMR) Simulations

@ Objective function:

@ Model
n n Xji— 2z, a; The observed three-way tensor is generated as X = X + £, where
D 167> p(—=L—) +Mllaill3 | +A2lBII3 + As[|CII3 R i i i
' . P 5 1laili2 2 2 3 2 Xo=), 1v,a 0b,oc, is the Kruskal tensor, £ is the noise tensor
i=1 =1 and the rank R is assumed to be known.
. A N N . The factor matrices and the true noise-free three-way tensor X is
The minimum A = (4; --- &,,)' can be obtained by y 0
sparse.
n Xjj—z)a @ The accuracy of the obtained estimate X can be calculated by the
& =min {67 Y p(——=—) +Mllal} (10) |
ai =minq0; 2 P 5, iljafi2 normalized mean squared error (NMSE)
j=1
. . . PaS X() - 2 2
for i=1,...,m, while B and C are fixed. NMSE(X) = w
. . 0ll2
@ In order to keep the results invariant, we center x; and columns of Z
to have median zero.
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Robust Tensor Esti

Simulations - Results

Simulations - Measure of performance

@ 2 x 2 contingency table

Estimate of A

0 #0 sum
True 0 nic nm n
A #0 | my  mc m
sum | nj I IR

where nic (resp. nac) is the number of entries in the estimate A “correctly

classified” as being zero (resp. non-zero) and nip (resp. nap) is the number of
. . IR TR ape ” .

entries in A "misclassified” as being non-zero (resp. zero).

o The classification error rate: CER(A) = (nip + nom)/ (1 - R)
or recovery rate: RER(A) =1 — CER(A).
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Simulations (for Regularization)

@ CP-ALS
- The average NMSE (standard deviations) : 0.0652 (0.0814)
- The average of confusion matrices for estimating A € R1000%3;

0 1507

0 1493
- The CP-ALS method does not set any of the elements of A to zero.
Both CER and RER are about 50% and 50% indicating that the
method serves as a random guess classifier.

@ CP alternating LASSO (Our method)
- The average NMSE : 0.0088 (0.0218) and average confusion matrix

1290 216
83 1411
- The rate of of correctly selecting zero features: 1290/1507 ~ 85.6%
and RER(A) = (1290 + 1411),/3000 = 90.3%.
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Simulations - Boxplots |

@ Simulation Setting | : / = 1000, J =20 and K =20, M = 50 tensors

The Kruskal tensor X has rank R = 3, and only the factor matrix
A € R1000%3 5 spharse where Ajj is either equal to a zero or an
independent random deviate from N{0,1) with equal probability 1/2.

The entries of B € R?%3 C € R?°*3: independent ~ N(0,1).
The columns of A, B and C are normalized to have unit length.

The noise tensor: £ € R1000x20x20 _ Nj(( 1), independent.
v1 = 1000,y = 500 and v3 — 500.

@ The sparsity factor (SF), the average number (based on M Monte
Carlo trials) of zero elements in Xy : SF =12.6%

o The signal to noise ratio (SNR), the average value of || Xo||?/||E]*:
SNR = 4.2894 (linear scale).
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Figure: Boxplots of the 10log;o(NMSE) values for simulation Setting | for ALS
and CP alternating LASSQ (Sparse ALS) methods
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Simulations (for Sparsity and Robustness) Conclusions

@ Multi-linear techniques using tensor decompositions provide a unifying

@ Simulation Setting Il framework for the high-dimensional data analysis.
: : 100020 20 : : :
The heavy-tailed noise tensor £ € R™5*°*< from the Cauchy @ Sparsity enables us to extract some essential features from a big data
distribution with symmetry center 0 and scale parameter 1/2 is added that are easily interpretable.
in place of the normal noise tensor to Xy generated in Simulation

) @ Robust (regularized) tensor decompositions clearly improves the

setting |. analysis and inference of multi-dimensional data.

@ The penalty parameter is selected by minimizing the BIC with the
weight w = /2 over a grid of A = A; = Ao = A3 values for the

computational feasibility.

@ We proposed a reliable method to provide good starting values based
on the ridge regression/ridge M-regression.

@ Combined with such initializations our robust regularization methods
show highly improved performance over the conventional methods.
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Simulations Results

Table: Simulation results for Cauchy noise

CP Alternating Classifying zeros RER Average NMSE
method correct  incorrect (std)

CPALS 0 0 50 % | 1.0-107 (7 -107)
CPA-LASSO 612 %  53.2% | 54.0% | 1.0-107 (7 -107)
CPA-RMR 0 0 50 % | 0.0487 (0.073)
CPA-LADLASSO | 93.40 % 11.7 % 90.9 % 0.0232 (0.044)

Our robust sparse methods, LAD-LASSO and RMR show excellent
performance, whereas CP-ALS and the CP alternating LASSO methods
yield poor estimates.

Robust and sparse estimation of tensor decompositions Visa Koivunen




